光谱学与光谱分析 |
|
|
|
|
|
The Aberration Corrected Grating Spectrometer Based on Adaptive Optics |
ZHENG Lian-hui1,2,3,4, RAO Chang-hui1,2*, GU Nai-ting1,2, QIU Qi4 |
1. Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China 2. Key Laboratory of Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China 3. University of Chinese Academy of Sciences, Beijing 100049, China 4. School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China |
|
|
Abstract To study the thermodynamics properties of the solar atmosphere with different height distribution, the imaging grating spectrometer with excellent image quality is one of the important tools to achieve this goal. However, the atmosphere turbulence can not be avoided for the imaging grating spectrometer installed in the ground-based solar telescope, and the imaging properties of the grating spectrometer will influenced by the wavefront aberration generalized by the atmosphere turbulence and the wavefront aberration generalized by the optical system adjusting errors and the optical element manufacturing errors. The atmospheric turbulence can be effectively compensated by the Adaptive Optics. To correct the wavefront aberrations of the optical system, a correction method based on Adaptive Optics is proposed, and the experiment validation is carried out to verify the feasibility of the method. The results demonstrate that the correction method proposed can effectively correct the wavefront aberration generalized by the atmosphere turbulence and the optical system aberration. The RMS value is roughly equal to 0.025λ after the Adaptive Optics correction. Besides, it has the virtue of lower the requirement of optical system adjusting errors and optical elements manufacturing errors.
|
Received: 2015-01-18
Accepted: 2015-04-15
|
|
Corresponding Authors:
RAO Chang-hui
E-mail: chrao@ioe.ac.cn
|
|
[1] Volkmer R, von der Lühe O, Denker C, et al. Astronomische Nachrichten, 2010, 331(6): 624. [2] Thomas R. Rimmele. Proc. SPIE, 2004, 34. [3] van Noort M J,Rouppe van der Voort L H M. Astrophysical Journal, 2006, 648: L67. [4] Chae J, Park H, Ahn K, et al. Solar Physics, 2012. [5] Rao C, Zhu L, Gu N, et al. Applied Optics, 2010, 49(31), G129. [6] Rao C, Zhu L, Gu N, et al. Third AO4ELT Conference-Adaptive Optics for Extremely Large Telescopes, 2013. [7] XUE Qing-sheng(薛庆生). 2010 Ph. D. Dissertation (2010 博士学位论文). Beijing: University of Chinese Academy of Sciences(中国科学院大学),2010. [8] Palmer C A, Loewen E G. Diffraction Grating Handbook,Springfield, OH: Newport Corporation,2005. [9] HUANG You-ran, XU Ao-ao, QING Zhi-hai, et al(黄佑然,许熬敖,秦志海, 等). Astrophysics Experiment(实测天体物理学). Beijing: Science Press(科学出版社), 1987. 267. [10] Roddier R. Progress in Optics, 1981. 281. [11] Goodman J W. Statistical Optics. New York:Wiley-Interscience, 1985. 567. [12] Rao C, Jiang W, Ling N. Proc. SPIE, 1999, 3763:84. |
[1] |
DU Guo-jun, ZHANG Yu-gui, CUI Bo-lun, JIANG Cheng, OU Zong-yao. Spectral Calibration of Hyperspectral Monitor (HSM) on Carbonsat[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1556-1562. |
[2] |
XIE Ying-ke1, 2, WANG Xi-chen2, LIANG Heng-heng2, WEN Quan3. A Near-Infrared Micro-Spectrometer Based on Integrated Scanning
Grating Mirror and Improved Asymmetric C-T Structure[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 563-568. |
[3] |
XI Liang1,2, SI Fu-qi1*, JIANG Yu1, ZHOU Hai-jin1, QIU Xiao-han1, CHANG Zhen1. Ground-Based IDOAS De-Striping by Weighted Unidirectional Variation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 627-633. |
[4] |
ZHONG Ming-yu1, 2, 3, ZHOU Hai-jin2, SI Fu-qi2*, WANG Yu2, DOU Ke2, SU Jing-ming1, 2, 3. Reconstruction of Stack Plume Based on Imaging Differential Absorption Spectroscopy and Compressed Sensing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1708-1712. |
[5] |
CHEN Yu1, WEI Yong-ming1, WANG Qin-jun1,2*, LI Lin3, LEI Shao-hua4, LU Chun-yan5. Effects of Different Spectral Resolutions on Modeling Soil Components[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 865-870. |
[6] |
LI Zhi-wei1, 2, SHI Hai-liang1, 2, LUO Hai-yan1, 2, XIONG Wei1, 2*. Study on the Relationship Between Apodization Function and Signal-to-Noise Ratio of Hyperspectral Spatial Interferogram[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(01): 29-33. |
[7] |
ZHANG Tian-tian1, LI Bing2*, CAI Gui-min2, LI Jun-hui1*, MA Yan-jun3, MA Li3, ZHAO Long-lian1, WU Shu-en2. Study on Spectral Data Processing Methods of New Type High-Density Grating Spectrometer Made in China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(08): 2651-2656. |
[8] |
HAO Li-hua1,2, LU Xiao-dong2, WANG Ming-quan1,2. Research on a Novel Static Imaging Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(09): 2971-2975. |
[9] |
ZHANG Rui1,2, ZHU Ji-wei1, LIU Jian-li1,2, CUI Ji-cheng1, LI Xiao-tian1, Bayanheshig1. Study on the Laser-Induced Plasma Spectroscopy Based on the Echelle Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1605-1609. |
[10] |
LIU Lu1,2,3, CHEN Yuan-yuan1,2,3*, ZHANG Rui1,2,3, WANG Zhi-bin1,2,3, XUE Peng1,3, LI Xiang2. Study on 0 Level Interference Suppression Method for Hyperspectral Imaging Based on AOTF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(10): 3182-3186. |
[11] |
ZHENG Zhi-zhong1,2, YANG Zhong1*, XIU Lian-cun2, DONG Jin-xin2, CHEN Chun-xia2, GAO Yang2, YU Zheng-kui2. Design of a SWIR Offner Imaging Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(07): 2267-2272. |
[12] |
LI Zhi-wei1, 2, 3, XIONG Wei1, 3*, SHI Hai-liang1, 3, LUO Hai-yan1, 3, QIAO Yan-li1, 3 . Study on Asymmetric Spatial Heterodyne Spectroscopy [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(07): 2291-2295. |
[13] |
YIN Lu1, 2,Bayanheshig1*,YAO Xue-feng1,CUI Ji-cheng1,ZHU Ji-wei1,ZHANG Rui1, 2. Algorithm for Background Removal in Spectral Image of Echelle Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(06): 1925-1929. |
[14] |
XIE Pei-yue1, 2, YANG Jian-feng1, XUE Bin1*, Lü Juan1, HE Ying-hong1, LI Ting1, MA Xiao-long1 . Research on an Equal Wavelength Spectrum Reconstruction Method of Interference Imaging Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(03): 848-852. |
[15] |
YANG Zeng-peng1, 2, TANG Yu-guo1, Bayanheshig1, CUI Ji-cheng1, YANG Jin1 . Research on Small-Type and High-Spectral-Resolution Grating Monochromator[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(01): 273-278. |
|
|
|
|