光谱学与光谱分析 |
|
|
|
|
|
Determination of As and Se in Animal and Plant Samples by the Normal ICP-MS with and without Octupole Reaction System and the ICP-MS with ORS |
SHI Yan-zhi1, WANG Ying-feng1, HE Run-juan1,CHEN Deng-yun2 |
1. Center of Analysis Test, Capital Normal University, Beijing 100037,China 2. Agilent Technologies Co. Ltd., Beijing 100022,China |
|
|
Abstract Some certified reference materials (CRMs) were digested and the elemental concentrations were determined by ICP-MS instrument, and the results include not only the trace key elements such as As, Pb, Hg and Cd but also the major components such as P, Ca, Fe, K, Na etc. The digestion method, the recoveries, and the detection limits are discussed to prove the reliability of ICP-MS and EPA200.8 method for the determination of the elements in food and plant samples. The ICP-MS instrument with ORS (octupole reaction system) was applied to the determination of As, Se etc, and the results are compared with those from the normal ICP-MS without ORS. The removal of ArCl and ArAr interference is discussed, and the advantage of ORS is proved by measuring the As and Se in some CRMs.
|
Received: 2004-03-06
Accepted: 2004-09-16
|
|
Corresponding Authors:
SHI Yan-zhi
|
|
Cite this article: |
SHI Yan-zhi,WANG Ying-feng,HE Run-juan, et al. Determination of As and Se in Animal and Plant Samples by the Normal ICP-MS with and without Octupole Reaction System and the ICP-MS with ORS [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2005, 25(06): 955-959.
|
|
|
|
URL: |
https://www.gpxygpfx.com/EN/Y2005/V25/I06/955 |
[1] Kawabata K. Analytical Chemistry,1991,63:2137. [2] JIN Xin-di(靳新娣). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2004,24(2):220.
|
[1] |
LI He1, WANG Yu2, FAN Kai2, MAO Yi-lin2, DING Shi-bo3, SONG Da-peng3, WANG Meng-qi3, DING Zhao-tang1*. Evaluation of Freezing Injury Degree of Tea Plant Based on Deep
Learning, Wavelet Transform and Visible Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 234-240. |
[2] |
LIU Xin-peng1, SUN Xiang-hong2, QIN Yu-hua1*, ZHANG Min1, GONG Hui-li3. Research on t-SNE Similarity Measurement Method Based on Wasserstein Divergence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3806-3812. |
[3] |
XIE Peng, WANG Zheng-hai*, XIAO Bei, CAO Hai-ling, HUANG Yi, SU Wen-lin. Hyperspectral Quantitative Inversion of Soil Selenium Content Based on sCARS-PSO-SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3599-3606. |
[4] |
ZENG Si-xian1, REN Xin1, HE Hao-xuan1, NIE Wei1, 2*. Influence Analysis of Spectral Line-Shape Models on Spectral Diagnoses Under High-Temperature Conditions[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2715-2721. |
[5] |
LIU Zhao1, 2, LI Hua-peng1, CHEN Hui1, 2, ZHANG Shu-qing1*. Maize Yield Forecasting and Associated Optimum Lead Time Research Based on Temporal Remote Sensing Data and Different Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2627-2637. |
[6] |
ZHAO Yu-wen1, ZHANG Ze-shuai1, ZHU Xiao-ying1, WANG Hai-xia1, 2*, LI Zheng1, 2, LU Hong-wei3, XI Meng3. Application Strategies of Surface-Enhanced Raman Spectroscopy in Simultaneous Detection of Multiple Pathogens[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2012-2018. |
[7] |
ZHANG Qi-yan1, YANG Jie2, 3, LI Jian-guo1*, SHI Wei-xin1, GAO Peng-xin1. Research on Quantitative Identification of Rock Color Using
Spectral Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1905-1911. |
[8] |
DAI Shuo1, XIA Qing1*, ZHANG Han1, HE Ting-ting2, ZHENG Qiong1, XING Xue-min1, LI Chong3. Constructing of Tidal Flat Extraction Index in Coastal Zones Using Sentinel-2 Multispectral Images[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1888-1894. |
[9] |
LI Jia-jia, XU Da-peng *, WANG Zi-xiong, ZHANG Tong. Research Progress on Enhancement Mechanism of Surface-Enhanced Raman Scattering of Nanomaterials[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1340-1350. |
[10] |
WANG Jin-mei, HE Shi, ZHANG Hang-xi, YANG Chen, YIN Yi-tong, ZHANG Li, ZHENG Pei-chao*. Study on the Detection Method of Nitrate Nitrogen in Water Based on
Ultraviolet Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1037-1042. |
[11] |
PENG Wei, YANG Sheng-wei, HE Tian-bo, YU Ben-li, LI Jin-song, CHENG Zhen-biao, ZHOU Sheng*, JIANG Tong-tong*. Detection of Water Vapor Concentration in Sealed Medicine Bottles Based on Digital Quadrature Phase-Locked Demodulation Algorithm and TDLAS
Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 698-704. |
[12] |
ZHANG Le-wen1, 2, WANG Qian-jin1, 3, SUN Peng-shuai1, PANG Tao1, WU Bian1, XIA Hua1, ZHANG Zhi-rong1, 3, 4, 5*. Analysis of Interference Factors and Study of Temperature Correction Method in Gas Detection by Laser Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 767-773. |
[13] |
XU Su-an, WANG Jia-xiang, LIU Yong. Detection of Adulteration of Vine Pepper Oil by Near-Infrared
Spectroscopy Combined With Improved Whale Optimization
Algorithm Model BAS-WOA-SVR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 569-576. |
[14] |
ZHANG Hai-yang, ZHANG Yao*, TIAN Ze-zhong, WU Jiang-mei, LI Min-zan, LIU Kai-di. Extraction of Planting Structure of Winter Wheat Using GBDT and Google Earth Engine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 597-607. |
[15] |
ZHANG Bo-han, YANG Jun, HUANG Qian-kun, XIE Xing-juan. Research on Gas Pressure Measurement Method Based on Absorption Spectroscopy and Laser Interference Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3692-3696. |
|
|
|
|