光谱学与光谱分析 |
|
|
|
|
|
Determination of Soil Quality from Chinese Apple Plant Area by NIR Spectroscopy |
DONG Yi-wei, HUANG Jin-li, SUN Bao-li, BAI Wei, FAN Zhong-nan, WANG Ya-nan, LIU Ya-wei, TONG Cheng-feng* |
Institute of Environment and Sustainable Development in Agriculture, the Chinese Academy of Agricultural Science, the Key Laboratory of Agro-Environment & Climate Change,the Ministry of Agriculture, Beijing 100081, China |
|
|
Abstract In the present work, 111 soil samples from 11 different Chinese apple plant areas were used to take the diffuse reflection spectra from 12 500 to 4 000 cm-1 by FT-NIR. The models of organic substance and pH value of soil samples were built by using partial least square regression (PLSR). The calibration model gave the correlation coefficients of 0.818 and 0.836 for the two values respectively, with the root mean square error of prediction (RMSEP) of 0.377 (%) and 0.251, respectively. In order to improve the robustness and performance of calibration, several spectra preprocessing methods were employed, including standard normalized variate (SNV), multiplicative scatter correction (MSC) and direct orthogonal signal correction (DOSC). Finally, the performance of DOSC was found to be the best for organic substance and pH value with RMSEP of 0.258(%) and 0.248, respectively. The results showed that the technology of NIR spectroscopy was useful to nondestructive determination of the organic substance and pH value of soil. These research findings provide theoretic base for fertilization and pomiculture by means of NIR diffuse reflection.
|
Received: 2008-08-06
Accepted: 2008-11-09
|
|
Corresponding Authors:
TONG Cheng-feng
E-mail: tongcf@cjac.org.cn
|
|
[1] http://www.agri.gov.cn/fxycpd/cg/t20070917_891636.htm. [2] JIANG Yuan-mao, PENG Fu-tian, ZHANG Hong-yan(姜远茂, 福田, 张宏彦). Chinese Journal of Soil Science(土壤通报), 2001, 32(4): 167. [3] WU Jian-ming, GAO Xian-biao, GAO Bi-mo,et al(吴建明, 高贤彪, 高弼模, 等). Scientia Agricultura Sinica(中国农业科学), 1988, 21(2): 17. [4] HUANG Chang-yong(黄昌勇). Pedology(土壤学). Beijing: China Agriculture Press(北京: 中国农业出版社), 2004. 192. [5] Dull G, Birth G S, Smittle D A, et al. Journal of Food Science, 1989, 54(2): 393. [6] SUN Jian-ying, LI Min-zan, ZHENG Li-hua, et al(孙建英,李民赞,郑立华,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2006, 26(3): 426. [7] SUN Yue-chun, WANG Kun(孙跃春,王 堃). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2007, 27(10): 2017. [8] CHEN Peng-fei, LIU Liang-yun, WANG Ji-hua, et al(陈鹏飞, 刘良云, 王纪华,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2008, 28(2): 295. [9] Dalal R C, Henry R J. Soil Science Society of America Journal, 1986, 50: 120. [10] Ben-Dor E, Banin A. Soil Science Society of America Journal, 1995, 59: 364. [11] Palacios-Orueta A, Ustin S L. Remote Sensing of Environment, 1998, 65: 170. [12] Couillard A, Turgeon A J, Shenk J S. Crop Science, 1997, 37: 1555. [13] Geladi P, McDougall D, Martens H. Applied Spectroscopy, 1985, 39: 491. [14] Westerhuis J A, De J S, Smilde A K. Chemometrics and Intellignet Lab Systems, 2001, 56 (1): 13. [15] YAN Yan-lu, ZHAO Long-lian, HAN Dong-hai, et al(严衍禄, 赵龙莲, 韩东海, 等). Elements and Application of Near-Infrared Spectra Analysis(近红外光谱分析基础与应用). Beijing: China Light Industry Press(北京: 中国轻工业出版社), 2005. 1. [16] Otto M. Chemometrics: Statistics and Computer Application in Analytical Chemistry(化学计量学:统计学与计算机在分析化学中的应用). Translated by SHAO Xue-guang, CAI Wen-sheng, XU Xiao-jie(邵学广, 蔡文生, 徐筱杰,译). Beijing: Science Press(北京:科学出版社), 2003. 39. [17] Kennard R W, Stone L A. Technometrics, 1969, 11: 137. [18] XU Guang-tong, YUAN Hong-fu, LU Wan-zhen(徐广通,袁洪福,陆婉珍). Chinese Journal of Analytical Chemistry(分析化学), 1999, 27(1): 30.
|
[1] |
XU Tian1, 2, LI Jing1, 2, LIU Zhen-hua1, 2*. Remote Sensing Inversion of Soil Manganese in Nanchuan District, Chongqing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 69-75. |
[2] |
GAO Feng1, 2, XING Ya-ge3, 4, LUO Hua-ping1, 2, ZHANG Yuan-hua3, 4, GUO Ling3, 4*. Nondestructive Identification of Apricot Varieties Based on Visible/Near Infrared Spectroscopy and Chemometrics Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 44-51. |
[3] |
LEI Hong-jun1, YANG Guang1, PAN Hong-wei1*, WANG Yi-fei1, YI Jun2, WANG Ke-ke2, WANG Guo-hao2, TONG Wen-bin1, SHI Li-li1. Influence of Hydrochemical Ions on Three-Dimensional Fluorescence
Spectrum of Dissolved Organic Matter in the Water Environment
and the Proposed Classification Pretreatment Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 134-140. |
[4] |
LIU Jia, ZHENG Ya-long, WANG Cheng-bo, YIN Zuo-wei*, PAN Shao-kui. Spectra Characterization of Diaspore-Sapphire From Hotan, Xinjiang[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 176-180. |
[5] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[6] |
LI Hu1, ZHONG Yun1, 2, FENG Ya-ting1, LIN Zhen1, ZHU Shi-jiang1, 2*. Multi-Vegetation Index Soil Moisture Inversion Model Based on UAV
Remote Sensing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 207-214. |
[7] |
HAN Xue1, 2, LIU Hai1, 2, LIU Jia-wei3, WU Ming-kai1, 2*. Rapid Identification of Inorganic Elements in Understory Soils in
Different Regions of Guizhou Province by X-Ray
Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 225-229. |
[8] |
BAI Xue-bing1, 2, SONG Chang-ze1, ZHANG Qian-wei1, DAI Bin-xiu1, JIN Guo-jie1, 2, LIU Wen-zheng1, TAO Yong-sheng1, 2*. Rapid and Nndestructive Dagnosis Mthod for Posphate Dficiency in “Cabernet Sauvignon” Gape Laves by Vis/NIR Sectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3719-3725. |
[9] |
WANG Qi-biao1, HE Yu-kai1, LUO Yu-shi1, WANG Shu-jun1, XIE Bo2, DENG Chao2*, LIU Yong3, TUO Xian-guo3. Study on Analysis Method of Distiller's Grains Acidity Based on
Convolutional Neural Network and Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3726-3731. |
[10] |
MENG Shan1, 2, LI Xin-guo1, 2*. Estimation of Surface Soil Organic Carbon Content in Lakeside Oasis Based on Hyperspectral Wavelet Energy Feature Vector[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3853-3861. |
[11] |
LI Qi-chen1, 2, LI Min-zan1, 2*, YANG Wei2, 3, SUN Hong2, 3, ZHANG Yao1, 3. Quantitative Analysis of Water-Soluble Phosphorous Based on Raman
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3871-3876. |
[12] |
CUI Song1, 2, BU Xin-yu1, 2, ZHANG Fu-xiang1, 2. Spectroscopic Characterization of Dissolved Organic Matter in Fresh Snow From Harbin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3937-3945. |
[13] |
CHENG Hui-zhu1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, MA Qian1, 2, ZHAO Yan-chun1, 2. Genetic Algorithm Optimized BP Neural Network for Quantitative
Analysis of Soil Heavy Metals in XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3742-3746. |
[14] |
HE Qing-yuan1, 2, REN Yi1, 2, LIU Jing-hua1, 2, LIU Li1, 2, YANG Hao1, 2, LI Zheng-peng1, 2, ZHAN Qiu-wen1, 2*. Study on Rapid Determination of Qualities of Alfalfa Hay Based on NIRS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3753-3757. |
[15] |
YANG Ke-li1, 2, PENG Jiao-yu1, 2, DONG Ya-ping1, 2*, LIU Xin1, 2, LI Wu1, 3, LIU Hai-ning1, 3. Spectroscopic Characterization of Dissolved Organic Matter Isolated From Solar Pond[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3775-3780. |
|
|
|
|