|
|
|
|
|
|
Spectroscopic Characterization of Dissolved Organic Matter in Fresh Snow From Harbin |
CUI Song1, 2, BU Xin-yu1, 2, ZHANG Fu-xiang1, 2 |
1. International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
2. Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin 150030, China
|
|
|
Abstract The study of the Spectroscopic characterization of dissolved organic matter (DOM) in fresh snow is conducive to exploring its response to atmospheric pollutants. In this research, ultraviolet-visible absorption spectroscopy (UV-Vis) three-dimensional excitation-emission matrix spectroscopy (3DEEMs) combined with parallel factor analysis (PARAFAC) were applied to analyze the spectral characteristics and sources of DOM in fresh snow samples from Harbin. Chromophoric dissolved organic matter (CDOM) content in fresh snow showed the same trend as the intensity of fluorescent dissolved organic matter (FDOM), CDOM content was different from that in other environmental media due to different DOM sources, atmospheric cloud transport, air pollution and chromophore photobleaching properties, however, the intensity of FDOM was lower than that of soil and ocean owing to the differences in salt content and DOM degradation kinetics. The absorption spectroscopy of DOM in the fresh snow showed an exponentially decreasing trend, similar to the absorption spectroscopy of water-soluble organic chromophores in atmospheric particles in winter. Obviously absorption peaks at 200~220 nm (affected by water molecules and dissolved oxygen) indicated that DOM had more unsaturated double-bond conjugated structures. E2/E3 values (the ratio of absorbance at 250 and 365 nm) indicated that DOM in fresh snow possessed the characteristics of simple structure, small molecular weight and weak aromaticity. Furthermore fulvic-like acid was the main component of DOM in fresh snow. PARAFAC obtained two types of fluorescent components (humic-like and protein-like), and their contributions to fluorescence intensity were 66.78% and 33.22%, respectively. Fluorescence parameters analysis showed that DOM in fresh snow in the present research was affected by both terrestrial input and microbial activity and had strong autogenic characteristics (BIX>1) and weak humification characteristics (HIX<0.8). The correlation analysis between fluorescence components and atmospheric pollutants revealed that the sources of components of fresh snow in Harbin are similar, the sampling time is during the heating period, and the sampling point is near the factory and the railway. Thus fine particulate matter (PM2.5) emitted from fossil fuels, biomass combustion, transportation, and industry were the main sources of DOM in fresh snow. The maximum fluorescence intensity of humic-like components preliminarily established the concentration prediction equation of PM2.5. The analysis of DOM spectral characteristics in fresh snow provided a reference value for revealing its source composition and further exploring its carrier behavior mechanism. Meanwhile, it provided a new research idea and technical support for rapid diagnosis and identification of atmospheric environmental pollution.
|
Received: 2022-06-30
Accepted: 2022-09-08
|
|
|
[1] Luo J, Li S. Journal of Cleaner Production, 2020, 282: 124545.
[2] Du Y X, Chen H, Zhang Y Y, et al. Chemosphere, 2014, 99: 254.
[3] FU Ping-qing, WU Feng-chang, LIU Cong-qiang(傅平青, 吴丰昌, 刘丛强). Advances in Water Science(水科学进展), 2005, 25(12): 5.
[4] WU Feng-chang, WANG Li-ying, LI Wen, et al(吴丰昌, 王立英, 黎 文, 等). Journal of Lake Sciences(湖泊科学), 2008, 20(1): 1.
[5] Chen Q C, Miyazaki Y, Kawamura K, et al. Environmental Science & Technology, 2016, 50(19): 10351.
[6] GAO Jie, JIANG Tao, LI Lu-lu, et al(高 洁, 江 韬, 李璐璐, 等). Environmental Science(环境科学), 2015, 36 (1): 151.
[7] Kieber R J, Skrabal S A, Smith B J, et al. Environmental Science & Technology, 2005, 39(6): 1576.
[8] YANG Yi, HAN Li-yuan, LIU Huan-wu, et al(杨 毅, 韩丽媛, 刘焕武, 等). Environmental Science(环境科学), 2020, 41(2): 743.
[9] Willey J D, Kieber R J, Eyman M S, et al. Global Biogeochemical Cycles, 2000, 14(1): 139.
[10] Pantelaki I, Papatzelou A, Balla D, et al. Science of the Total Environment, 2018, 627: 1433.
[11] Zhou Y Q, Yao X L, Zhang Y B, et al. Environmental Pollution, 2017, 224: 638.
[12] Birdwell J E, Valsaraj K T. Atmospheric Environment, 2010, 44(27): 3246.
[13] FU Ping-qing, WU Feng-chang, LIU Cong-qiang, et al(傅平青, 吴丰昌, 刘丛强, 等). Oceanologia et Limnologia Sinica(海洋与湖沼), 2007 (6): 512.
[14] Gao J K, Liang C L, Shen G Z, et al. Chemosphere, 2017, 176: 108.
[15] Yang L Y, Chen W, Zhuang W E, et al. Estuarine Coastal and Shelf Science, 2019, 217: 45.
[16] ZHU Jie, LIN Wei-yan, YANG Jing, et al(祝 婕, 蔺尾燕, 杨 静, 等). Jiangsu Agricultural Sciences(江苏农业科学), 2020, 48(10): 273.
[17] Zhang Y L, Yin Y, Feng L Q, et al. Water Research, 2011, 45(16): 5110.
[18] Sokol N W, Slessarev E, Marschmann G L, et al. Nature Reviews Microbiology, 2022, 20(7): 415.
[19] Ishii S K L, Boyer T H. Environmental Science & Technology, 2012, 46(4): 2006.
[20] Bao H Y, Qiao J, Zhang R Y, et al. Science of the Total Environment, 2022, 824: 153846.
[21] Gao T G, Kang S C, Chen R S, et al. Science of the Total Environment, 2021, 776: 145911.
[22] Osburn C L, Handsel L T, Mikan M P, et al. Environmental Science & Technology, 2012, 46(16): 8628.
[23] Scachez N P, Skeriotis A T, Miller C M. Environmental Science & Technology, 2014, 48(3): 1582.
[24] Ohno T. Environmental Science & Technology, 2002, 36(4): 742.
[25] Cory R M, Mcknight D M. Environmental Science & Technology, 2005, 39(21): 8142.
[26] LI Lu-lu, JIANG Tao, YAN Jin-long, et al(李璐璐, 江 韬, 闫金龙, 等). Environmental Science(环境科学), 2014, 35(3): 933.
[27] Haan H D, Boer T D. Water Research, 1987, 21(6): 731.
[28] Maie N, Parish K J, Watanabe A, et al. Geochimica et Cosmochimica Acta, 2006, 70(17): 4491.
[29] Mcknight D M, Boyer E W, Westerhoff P K, et al. Limnology and Oceanography, 2001, 46(1): 38.
[30] Huguet A, Vacher L, Relexans S, et al. Organic Geochemistry, 2008, 40(6): 706.
[31] LIU Ming-liang, ZHANG Yun-lin, QIN Bo-qiang(刘明亮, 张运林, 秦伯强). Journal of Lake Sciences(湖泊科学), 2009, 21(2): 234.
[32] LIN Zi-shen, HUANG Ting-lin, YANG Shang-ye, et al(林子深, 黄廷林, 杨尚业, 等). Environmental Science(环境科学), 2020, 41(5): 2210.
[33] HUO Cheng, LI Pan-pan, GE Lin-ke, et al(霍 城, 李盼盼, 葛林科, 等). Chinese Journal of Polar Research(极地研究), 2016, 28(4): 484.
[34] Yang L, Chen W, Zhuang W E, et al. Estuarine Coastal and Shelf Science, 2019, 217: 45.
[35] Kieber R J, Whitehead R F, Reid S N, et al. Journal of Atmospheric Chemistry, 2006, 54(1): 21.
[36] Chen Q C, Ikemori F, Mochida M. Environmental Science & Technology, 2016, 50(20): 10859.
[37] Qin X Q, Yao B, Jin L, et. al. Aquatic Geochemistry, 2020, 26(1): 71.
[38] LIANG Jian, JIANG Tao, WEI Shi-qiang, et al(梁 俭, 江 韬, 魏世强, 等). Environmental Science(环境科学), 2015,(3): 888.
[39] WANG Zhao-yang, ZHAO Chen, OU Jia-qi, et al(王朝阳, 赵 晨, 欧佳奇, 等). Environmental Chemistry(环境化学), 2016, 35(11): 2269.
[40] Xiao Y H, Sara-Aho T, Hartikainen H, et al. Limnology and Oceanography, 2013, 58(2): 653.
[41] Walsh J J, Weisberg R H, Dieterle D A, et. al. Journal of Geophysical Research-oceans, 2003, 108(C6): 3190.
[42] Chen Q C, Mu Z, Song W H, et al. Journal of Geophysical Research: Atmospheres, 2019, 124(19): 10546.
[43] Wong J P S, Nenes A, Weber R J. Environmental Science & Technology, 2017, 51(15):8414.
[44] Zhao R, Lee A K Y, Huang L, et. al. Atmospheric Chemistry and Physics, 2015, 15(11):6087.
[45] Singh S, D'Sa E, Swenson E. Journal of Environmental Sciences, 2010, 22(10): 1481.
[46] Vodacek A, Blough N V, DeGrandpre M D, et al. Limnology and Oceanography, 1997, 42(4): 674.
[47] Huguet A, Vacher L, Relexans S, et. al. Organic Geochemistry, 2009, 40(6): 706.
[48] HAO Rui-xia, CAO Ke-xin, ZHAO Gang, et al(郝瑞霞, 曹可心, 赵 钢, 等). Journal of Beijing University of Technology(北京工业大学学报), 2006, (12): 1062.
[49] SU Xin-ying, WANG Yu, CHENG Xin, et al(苏欣颖, 王 宇, 程 欣, 等). Environmental Chemistry(环境化学), 2021, 40(1): 312.
[50] Stedmon C A, Markager S, Bro R. Marine Chemistry, 2003, 82(3-4): 239.
[51] Coble P G. Chemical Reviews, 2007, 107(2): 402.
[52] Matos J T V, Freire S M S C, Duarte R M B O, et al. Atmospheric Environment, 2015, 102: 1.
[53] Stedmon C A, Markager S. Limnology and Oceanography, 2005, 50(2): 686.
[54] Hautala K, Peuravuori J, Pihlaja K. Water Research, 2000, 34(1): 246.
[55] Barreto S, Nozaki J, Barreto W J. Acta Hydrochimica et Hydrobiologica, 2004, 31(6): 513.
[56] Youhei Y, Rudolf J, Nagamitsu M, et al. Limnology and Oceanography, 2008, 53(5): 1900.
[57] Inamdar S, Finger N, Singh S, et al. Biogeochemistry, 2012, 108(1-3): 55.
|
[1] |
LEI Hong-jun1, YANG Guang1, PAN Hong-wei1*, WANG Yi-fei1, YI Jun2, WANG Ke-ke2, WANG Guo-hao2, TONG Wen-bin1, SHI Li-li1. Influence of Hydrochemical Ions on Three-Dimensional Fluorescence
Spectrum of Dissolved Organic Matter in the Water Environment
and the Proposed Classification Pretreatment Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 134-140. |
[2] |
LIANG Ye-heng1, DENG Ru-ru1, 2*, LIANG Yu-jie1, LIU Yong-ming3, WU Yi4, YUAN Yu-heng5, AI Xian-jun6. Spectral Characteristics of Sediment Reflectance Under the Background of Heavy Metal Polluted Water and Analysis of Its Contribution to
Water-Leaving Reflectance[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 111-117. |
[3] |
YANG Ke-li1, 2, PENG Jiao-yu1, 2, DONG Ya-ping1, 2*, LIU Xin1, 2, LI Wu1, 3, LIU Hai-ning1, 3. Spectroscopic Characterization of Dissolved Organic Matter Isolated From Solar Pond[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3775-3780. |
[4] |
CUI Xiang-yu1, 3, CHENG Lu1, 2, 3*, YANG Yue-ru1, WU Yan-feng1, XIA Xin1, 3, LI Yong-gui2. Color Mechanism Analysis During Blended Spinning of Viscose Fibers Based on Spectral Characteristics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3916-3923. |
[5] |
FENG Hai-kuan1, 2, FAN Yi-guang1, TAO Hui-lin1, YANG Fu-qin3, YANG Gui-jun1, ZHAO Chun-jiang1, 2*. Monitoring of Nitrogen Content in Winter Wheat Based on UAV
Hyperspectral Imagery[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3239-3246. |
[6] |
YANG Xin1, 2, XIA Min1, 2, YE Yin1, 2*, WANG Jing1, 2. Spatiotemporal Distribution Characteristics of Dissolved Organic Matter Spectrum in the Agricultural Watershed of Dianbu River[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2983-2988. |
[7] |
LI Bin, HAN Zhao-yang, WANG Qiu, SUN Zhao-xiang, LIU Yan-de*. Research on Bruise Level Detection of Loquat Based on Hyperspectral
Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1792-1799. |
[8] |
ZHANG Xin-yuan1, LI Yan2, WEI Dan1, 2*, GU Jia-lin2, JIN Liang2, DING Jian-li2, HU Yu1, ZHANG Xin-yuan1, YANG Hua-wei1. Effect of Rainfall Runoff on DOM Fluorescence of Soil on a Typical Slope Under Vegetation Cover[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1921-1926. |
[9] |
FAN Chun-hui1, 2, YUAN Wen-jing1, XIN Yi-bei1, GUO Chong1, LAN Meng-xin1, JIANG Zhi-yan1. Spectral Characteristics of Dissolved Organic Matter (DOM) in Reclaimed Water Used for Agricultural Irrigation in Water-Deficient Area for the Dual Carbon Targets[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1465-1470. |
[10] |
SHI Chuan-qi1, LI Yan2, HU Yu3, YU Shao-peng1*, JIN Liang2, CHEN Mei-ru1. Fluorescence Spectral Characteristics of Soil Dissolved Organic Matter in the River Wetland of Northern Cold Region, China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1517-1523. |
[11] |
LIU Han-yang1, XING Cheng-zhi3*, JI Xiang-guang4, LIN Ji-nan3, ZHAO Chun-hui3, WEI Shao-cong2, ZHANG Cheng-xin2, LIU Hao-ran5, TAN Wei3, LIU Cheng2. Taking Juehua Island as a Typical Example to Explore the Vertical
Distribution Characteristics and Potential Sources of Air Pollutants[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 760-766. |
[12] |
NIU An-qiu, WU Jing-gui*, ZHAO Xin-yu. Infrared Spectrum Analysis of Degradation Characteristics of PPC Plastic Film Under Different Covering Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 533-540. |
[13] |
ZHANG Jian1, LIU Ya-jian2, CAO Ji-hu3. Raman Spectral Characteristics of Pyrite in Luyuangou Gold Deposit, Western Henan Province and Its Indicative Significance for Multiphase Metallogenesis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3770-3774. |
[14] |
ZHANG Heng-ming1, SHI Yu1*, LI Chun-kai1, 2, 3, GU Yu-fen1, ZHU Ming1. The Effect of Electrode Polarity on Arc Plasma Spectral Characteristics of Self-Shielded Flux Cored Arc Welding[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3917-3926. |
[15] |
DAI Qian-cheng1, XIE Yong1*, TAO Zui2, SHAO Wen1, PENG Fei-yu1, SU Yi1, YANG Bang-hui2. Research on Fluorescence Retrieval Algorithm of Chlorophyll a Concentration in Nanyi Lake[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3941-3947. |
|
|
|
|