光谱学与光谱分析 |
|
|
|
|
|
Extracting Black Soil Border in Heilongjiang Province Based on Spectral Angle Match Method |
ZHANG Xin-le1, 2,ZHANG Shu-wen1*,LI Ying1,LIU Huan-jun1, 2 |
1. The Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun 130012, China 2. Graduate University of Chinese Academy of Sciences, Beijing 100039, China |
|
|
Abstract As soils are generally covered by vegetation most time of a year, the spectral reflectance collected by remote sensing technique is from the mixture of soil and vegetation, so the classification precision based on remote sensing (RS) technique is unsatisfied. Under RS and geographic information systems (GIS) environment and with the help of buffer and overlay analysis methods, land use and soil maps were used to derive regions of interest (ROI) for RS supervised classification, which plus MODIS reflectance products were chosen to extract black soil border, with methods including spectral single match. The results showed that the black soil border in Heilongjiang province can be extracted with soil remote sensing method based on MODIS reflectance products, especially in the north part of black soil zone; the classification precision of spectral angel mapping method is the highest, but the classifying accuracy of other soils can not meet the need, because of vegetation covering and similar spectral characteristics; even for the same soil, black soil, the classifying accuracy has obvious spatial heterogeneity, in the north part of black soil zone in Heilongjiang province it is higher than in the south, which is because of spectral differences; as soil uncovering period in Northeastern China is relatively longer, high temporal resolution make MODIS images get the advantage over soil remote sensing classification; with the help of GIS, extracting ROIs by making the best of auxiliary data can improve the precision of soil classification; with the help of auxiliary information, such as topography and climate, the classification accuracy was enhanced significantly. As there are five main factors determining soil classes, much data of different types, such as DEM, terrain factors, climate (temperature, precipitation, etc.), parent material, vegetation map, and remote sensing images, were introduced to classify soils, so how to choose some of the data and quantify the weights of different data layers needs further study.
|
Received: 2008-05-10
Accepted: 2008-08-20
|
|
Corresponding Authors:
ZHANG Shu-wen
E-mail: zhangshuwen@neigae.ac.cn
|
|
[1] XU Bin-bin(徐彬彬). Soils(土壤), 2000, 32(6): 281. [2] Brown D J. Geoderma, 2007, 140(4): 444. [3] BAO Yi-dan, HE Yong, FANG Hui, et al(鲍一丹, 何 勇, 方 慧, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2007, 27(1): 62. [4] LIU Huan-jun, ZHANG Bai, ZHANG Yuan-zhi, et al(刘焕军, 张 柏, 张渊智, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2008, 28(3): 624. [5] LUO Hong-xia, GONG Jian-ya, JIAN Dai-jun(罗红霞, 龚健雅, 蹇代君). Resources and Environment in the Yangtza Basin(长江流域资源与环境), 2006, 15(1): 41. [6] Murphy R J, Wadge G. International Journal of Remote Sensing, 1994, 15: 63. [7] Kornblau M L, Cipra J E. Remote Sensing of Environment, 1983, 13(2): 103. [8] Thompson D R, Haas R H, Milford M H. Soil Science Society of America Journal, 1981, 45: 91. [9] McBratneya A B, Mendonca Santos M L, Minasny B. Geoderma, 2003, 117: 3. [10] Dobos E, Micheli E, Baumgardner M F, et al. Geoderma, 2000, 97: 367. [11] Dobos E, Montanarella L, Nègre T, et al. International Journal of Applied Earth Observation and Geoinformation, 2001, 3(1): 30. [12] Kruse F A, Lefkoff A B, Boardman J W, et al. Remote Sensing of Environment, 1993, 44: 145. [13] AN Bin, CHEN Shu-hai, YAN Wei-dong(安 斌, 陈书海, 严卫东). Chinese Journal of Stereology and Image Analysis(中国体视学与图像分析), 2005, 10(1): 5560.
|
[1] |
ZHENG Hong-quan, DAI Jing-min*. Research Development of the Application of Photoacoustic Spectroscopy in Measurement of Trace Gas Concentration[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 1-14. |
[2] |
CHENG Jia-wei1, 2,LIU Xin-xing1, 2*,ZHANG Juan1, 2. Application of Infrared Spectroscopy in Exploration of Mineral Deposits: A Review[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 15-21. |
[3] |
FAN Ping-ping,LI Xue-ying,QIU Hui-min,HOU Guang-li,LIU Yan*. Spectral Analysis of Organic Carbon in Sediments of the Yellow Sea and Bohai Sea by Different Spectrometers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 52-55. |
[4] |
LI Jie, ZHOU Qu*, JIA Lu-fen, CUI Xiao-sen. Comparative Study on Detection Methods of Furfural in Transformer Oil Based on IR and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 125-133. |
[5] |
BAI Xi-lin1, 2, PENG Yue1, 2, ZHANG Xue-dong1, 2, GE Jing1, 2*. Ultrafast Dynamics of CdSe/ZnS Quantum Dots and Quantum
Dot-Acceptor Molecular Complexes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 56-61. |
[6] |
XU Tian1, 2, LI Jing1, 2, LIU Zhen-hua1, 2*. Remote Sensing Inversion of Soil Manganese in Nanchuan District, Chongqing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 69-75. |
[7] |
WANG Fang-yuan1, 2, HAN Sen1, 2, YE Song1, 2, YIN Shan1, 2, LI Shu1, 2, WANG Xin-qiang1, 2*. A DFT Method to Study the Structure and Raman Spectra of Lignin
Monomer and Dimer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 76-81. |
[8] |
LIU Zhen1*, LIU Li2*, FAN Shuo2, ZHAO An-ran2, LIU Si-lu2. Training Sample Selection for Spectral Reconstruction Based on Improved K-Means Clustering[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 29-35. |
[9] |
YANG Chao-pu1, 2, FANG Wen-qing3*, WU Qing-feng3, LI Chun1, LI Xiao-long1. Study on Changes of Blue Light Hazard and Circadian Effect of AMOLED With Age Based on Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 36-43. |
[10] |
GAO Feng1, 2, XING Ya-ge3, 4, LUO Hua-ping1, 2, ZHANG Yuan-hua3, 4, GUO Ling3, 4*. Nondestructive Identification of Apricot Varieties Based on Visible/Near Infrared Spectroscopy and Chemometrics Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 44-51. |
[11] |
ZHENG Pei-chao, YIN Yi-tong, WANG Jin-mei*, ZHOU Chun-yan, ZHANG Li, ZENG Jin-rui, LÜ Qiang. Study on the Method of Detecting Phosphate Ions in Water Based on
Ultraviolet Absorption Spectrum Combined With SPA-ELM Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 82-87. |
[12] |
XU Qiu-yi1, 3, 4, ZHU Wen-yue3, 4, CHEN Jie2, 3, 4, LIU Qiang3, 4 *, ZHENG Jian-jie3, 4, YANG Tao2, 3, 4, YANG Teng-fei2, 3, 4. Calibration Method of Aerosol Absorption Coefficient Based on
Photoacoustic Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 88-94. |
[13] |
LI Xin-ting, ZHANG Feng, FENG Jie*. Convolutional Neural Network Combined With Improved Spectral
Processing Method for Potato Disease Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 215-224. |
[14] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
[15] |
LEI Hong-jun1, YANG Guang1, PAN Hong-wei1*, WANG Yi-fei1, YI Jun2, WANG Ke-ke2, WANG Guo-hao2, TONG Wen-bin1, SHI Li-li1. Influence of Hydrochemical Ions on Three-Dimensional Fluorescence
Spectrum of Dissolved Organic Matter in the Water Environment
and the Proposed Classification Pretreatment Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 134-140. |
|
|
|
|