光谱学与光谱分析 |
|
|
|
|
|
Visible Absorption Spectra and Resonance Raman Spectra of n-π* Singlet-Triplet Transition of p-Benzoquinone in CS2 |
YIN Jian-hua1,LI Zuo-wei1*,REN Chun-nian2,ZHANG Liu-yang1 |
1. College of Physics, Jilin University, Changchun 130023, China
2. Hisense Optoelectronics Technology Co. Ltd., Qingdao 266071, China |
|
|
Abstract The visible absorption spectra of p-benzoquinone (PBQ) in CS2 were measured, and a weak absorption band around 507 nm attributed to n-π* singlet-triplet transition was demonstrated. Using the resonance Raman effect excited in liquid-core optical fiber which can enhance Raman intensity by 6-9 orders of magnitude, the authors obtained the 514.5 nm excited resonance Raman (RR) spectra of PBQ at 1 439 cm-1 in the concentration range from 10-3 to 10-6 mol·L-1. The new characteristic RR band is attributed to the symmetric CO stretch (νCO) of n-π* singlet-triplet transition of PBQ. The resonance Raman shift is blue-shifted with decreasing concentration. The results of this paper are helpful for understanding the relationship between the electric structure and the photophysical properties of PBQ, and for obtaining more abundant structural information of molecules.
|
Received: 2004-09-08
Accepted: 2004-12-18
|
|
Corresponding Authors:
LI Zuo-wei
|
|
Cite this article: |
YIN Jian-hua,LI Zuo-wei,REN Chun-nian, et al. Visible Absorption Spectra and Resonance Raman Spectra of n-π* Singlet-Triplet Transition of p-Benzoquinone in CS2 [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2005, 25(11): 1821-1823.
|
|
|
|
URL: |
https://www.gpxygpfx.com/EN/Y2005/V25/I11/1821 |
[1] Puranik M, Chandrasekhar J, Umapathy S. Chem. Phys. Lett., 2001, 337: 224. [2] Itoh T. Chem. Rev., 1995, 95: 2351. [3] Beck E D. J. Phys. Chem., 1991, 95: 2818. [4] Stammreich H, Teixeira Sans Th. J. Chem. Phys., 1965, 42: 920. [5] Dunn T M, Francis A H. J. Mol. Spectrosc., 1974, 50: 1. [6] (a) Rossetti R, Beck B E, Brus L E. J. Phys. Chem. A, 1983, 87: 3058. (b) Beck S M, Brus L E. J. Am. Chem. Soc., 1982, 104: 1103. (c) Beck S M, Brus L E. J. Am. Chem. Soc., 1982, 104: 4789. [7] (a) Puranik M, Umapathy S. J. Chem. Phys., 2001, 115: 6106. (b) Puranik M, Chandrasekhar J, Snijders J G, et al. J. Phys. Chem. A, 2001, 105: 10562. (c) Balakrishnan G, Umapathy S. J. Chem. Soc. Faraday. Trans., 1997, 93: 4125. [8] (a) Kuroe H, Seto H, Sasaki J, et al. J. Phys. Soc. Japan, 1998, 67: 2881. (b) Luther S, Nojiri H, Motokawa M, et al. J. Phys. Soc. Japan, 1998, 67: 3715. [9] (a) Kageyama H, Nishi M, Aso N. Phys. Rev. Lett., 2000, 84, 5876. (b) Lememens P, Grove M, Fischer M, et al. Physica B: Condensed Matter, 2000, 281-282: 656. [10] Walrafen G E, Stone J. Appl. Spectrosc., 1972, 26: 585. [11] YIN Jian-hua, GAO Shu-qin, XU Xin-feng, et al(尹建华,高淑琴,徐欣锋, 等). Chem. J. of Chinese University(高等学校化学学报), 2002, 23(12): 2300. [12] LI Zuo-wei, LI Ji-nan, GAO Shu-qin(里佐威, 李继男, 高淑琴). Jpn. J. Appl. Phys., 1998, 37(4A): 1889. [13] Reichardt C. Solvent Effects in Organic Chemistry. New York: Weinheim, Federal Republic of Germany; Verlag Chemie, 1979. Appendixes: Table A-7. [14] Sidman J W. J. Am. Chem. Soc., 1956, 78: 2363. [15] Kuboyama A. Bull. Chem. Soc. Japan, 1962, 35(2): 295. [16] Goodman J, Brus L E. J. Chem. Phys., 1978, 69(4): 1604. [17] Kanda Y, Kaseda H, Matumura T. Spectrochim. Acta, 1964, 20: 1387. [18] Huang R L, Goh S H, Ong S H. The Chemistry of Free Radicals. London: Edward Arnold Ltd., 1974. 79. [19] Avouris P, Gelbart W M, EL-SAYED M A, et al. Chem. Rev., 1977, 77: 793. [20] Brus L E, McDonald J R. J. Chem. Phys., 1973, 58: 4223. [21] Mohandas P, Umapathy S. J. Phys. Chem. A, 1997, 101: 4449. [22] (a) Tripathi G N R. J. Chem. Phys., 1981, 74(11): 6044. (b) Tripathi G N R, Schuler R H. J. Phys. Chem., 1987, 91: 5881. |
[1] |
LI Shuo1, 2, WANG Jun-xing1, HE Yue1, LI Zheng-qiang2, SUN Cheng-lin1*. The Effect of Resonance Effect and Electron-Phonon Coupling on Resonance Raman Spectra of Linear Polymers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 454-458. |
[2] |
XU Bing-bing, JIN Shang-zhong*, JIANG Li, LIANG Pei. A Review of Applications of Resonance Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(07): 2119-2127. |
[3] |
LI Shuo1, 3, NI Mu-cui1, GUO Xin1, LI Hai-ying1, MAO Jun-gang2, ZHANG Jin-bao1, LI Yu1, WANG Zhi-jun1, SUN Cheng-lin1, LI Zuo-wei1, LI Zheng-qiang3, HE Yue1*. A Study of the Distribution of β-Carotene in Different Parts of Radishes by Carbon-Carbon Double Bond[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(03): 899-904. |
[4] |
GONG Nan1, CAO Xian-wen1, SUN Cheng-lin1, FANG Wen-hui3, YUAN Ju-hui2, GAO Shu-qin1, LI Zuo-wei1, CHEN Wei2*, FU Hao-yang1*. Effects of External Fields on CC Atomic Vibrations Modulated by Electron Band Gap[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(08): 2462-2467. |
[5] |
FAN Yuan, WU Rui-mei*, AI Shi-rong, LIU Mu-hua, YANG Hong-fei, ZHENG Jian-hong . Identification Study of Edible Oil Species with Laser Induced Fluorescence Technology Based on Liquid Core Optical Fiber[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(10): 3202-3206. |
[6] |
ZHANG Xue2, SUN Mei-jiao2, LI Shuo2, LIU Tie-cheng1, 2*, SUN Cheng-lin1, 2, LI Zuo-wei2 . Resonance Raman Spectra of Linear Polymer Molecule [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(05): 1275-1278. |
[7] |
OUYANG Shun-li1,2,ZHOU Mi2,CAO Biao2,MEN Zhi-wei2, GAO Shu-qin2,LI Zuo-wei1,2*,LU Guo-hui2, YANG Jian-ge2,3. Lycopene and β-Carotene Content in Tomato Analyzed by the Second Harmonic[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2009, 29(12): 3362-3364. |
[8] |
JIA Li-hua1, WANG Yi-ding1, SUN Cheng-lin2, 3*, LI Zhan-long2, LI Zuo-wei2, WANG Li-jun3 . Study of Biological Molecules in Water by Using the Resonance Raman Spectra in Liquid-Core Optical Fiber[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2009, 29(10): 2686-2688. |
[9] |
LIN Hai-bo, XU Xiao-xuan*,WANG Bin, WU Bin-lin, XU Jia-lin, YU Gang, ZHANG Cun-zhou . Study of Poly (3,4-Ethylene Dioxythiophene):Poly (Styrene Sulfonate) by In-Situ Resonance Raman Spectroscopy [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2006, 26(04): 646-648. |
|
|
|
|