|
|
|
|
|
|
A Review of Applications of Resonance Raman Spectroscopy |
XU Bing-bing, JIN Shang-zhong*, JIANG Li, LIANG Pei |
Institute of Optical and Electronic Science, China Jiliang University, Hangzhou 310018, China |
|
|
Abstract Raman spectroscopy is a powerful tool for providing information about material structure, but its application scope is limited due to its weak Raman scattering signal and low sensitivity. However, in resonant Raman spectroscopy(RRS), the absorption intensity of the incident light by the molecule is greatly increased due to the frequency of the excitation light source falls within one electron absorption band of the molecule and the transition to the electron excited state of molecule becomes a resonance absorption after absorbting photons. RRS can increase the signal intensity by a factor of 106 compared to conventional Raman spectroscopy. Therefore, it is more widely applied with its higher sensitivity and selectivity, especially in the fields of biology and medicine. For instance: (1) Analysis of pigments such as carotenoid and chlorophyll et al. in biological matrices; (2) Researches on organic substances such as cells, proteins, and DNA, as well as the diagnosis of some clinical diseases. RRS can obtain more important information of molecular structure which is hidden in normal Raman spectroscopy. RRS can be achieved at very low concentration, and the Raman lines with resonance Raman enhancement belong to the group that can generate electron absorption, which is crucial to coloured substance and biological samples. The active sites of many of these samples are close to the chromophore groups, and the object of research is often one part of biological macromolecules, so RRS plays an important role in researching the relationship of the structure and function of biological substances. In recent years, RRS has been innovated and extended such as the application of new technologies of Liquid-core optical fiber Resonance Raman spectroscopy and Transmission Resonance Raman spectroscopy with the development of spectroscopy. This view summarizes and analyzes the raw paper, data and main viewpoint of RRS technology applications in recent years. It introduced the historical background and research status of RRS, and carried out a detailed overview of the application of resonance Raman spectroscopy in the fields of pigment detection, biology detection and explosive detection as well as the development and application of relevant new technology. RRS will have an irreplaceable position in the field of scientific research field with the rapid development of spectroscopy technology.
|
Received: 2018-04-26
Accepted: 2018-08-17
|
|
Corresponding Authors:
JIN Shang-zhong
E-mail: jinsz@cjlu.edu.cn
|
|
[1] Ermakov I V, Gellermann W. Archives of Biochemistry & Biophysics, 2010, 504(1): 40.
[2] Kish E, Wang K, Ilioaia C, et al. Biochimica Biophysica Acta, 2016, 1857(9): 1490.
[3] Rimai L, Heyde M E, Gill D. Journal of the American Chemical Society, 1973, 95(14): 4493.
[4] Ibarrondo I, Prietotaboada N, Martínezarkarazo I,et al. Environ. Sci. Pollut. Res. Int., 2016, 23(7): 6390.
[5] Tintchev F, Kuhlmann U, Wackerbarth H, et al. Food Chemistry, 2009, 112(2): 482.
[6] Ruban A, Pascal A A, Robert B. FEBS Letters, 2000, 477(3): 181.
[7] Okada K, Nishizawa E, Fujimoto Y, et al. Applied Spectroscopy, 1992, 46(3): 518.
[8] Pascal A A, Caron L, Rousseau B, et al. Biochemistry, 1998, 37(8): 2450.
[9] Londero P, Lombardi J R, Leona M. Journal of Raman Spectroscopy, 2013, 44(1): 131.
[10] Jensen L, Schatz G C. Journal of Physical Chemistry A, 2006, 110(18): 5973.
[11] Alfano R R, Tang G, Pradhan A,et al. IEEE Journal of Quantum Electronics, 1987, 23(10): 1806.
[12] Liu C H, Zhou Y, Sun Y, et al. Technol. Cancer Res. Treat., 2013, 12(4): 371.
[13] Sriramoju V, Boydstonwhite S, Zhang C, et al. Optical Biopsy XV: Toward Real-Time Spectroscopic Imaging and Diagnosis, 2017, 60: 100601B.
[14] Zhou Y, Liu C H , Sun Y , et al. Journal of Biomedical Optics, 2012, 17(11): 116021.
[15] Köhler M, Machill S, Salzer R, et al. Analytical & Bioanalytical Chemistry, 2009, 393(5): 1513.
[16] Gonchukov S, Sukhinina A, Bakhmutov D, et al. Laser Physics Letters, 2013, 10(7): 075610.
[17] Rd A J, Nalla R K, Balooch G, et al. Journal of Bone & Mineral Research the Official Journal of the American Society for Bone & Mineral Research, 2010, 21(12): 1879.
[18] Chen Q M, Xie Y F, Xi J Z, et al. Food Chemistry, 2018, 243: 58.
[19] Harz M, Claus R A, Bockmeyer C L, et al. Biopolymers, 2006, 82(4): 317.
[20] Harz M, Bockmeyer C L, Rösch P, et al. Medical Laser Application, 2007, 22(2): 87.
[21] Mak P J, Kaluka D, Manyumwa M E, et al. Biopolymers, 2010, 89(11): 1045.
[22] Wells A V, Li P, Champion P M, et al. Biochemistry, 1992, 31(18): 4384.
[23] Tosha T, Kagawa N M, Waterman M, et al. Journal of Biological Chemistry, 2008, 283(7): 3708.
[24] Chi Z, Chen X G, Holtz J S W, et al. Biochemistry, 1998, 37(9): 2854.
[25] Arzhantsev S, Vilker V, Kauffman J. Applied Spectroscopy, 2012, 66(11): 1262.
[26] Huang C Y, Balakrishnan G, Spiro T G. Journal of Raman Spectroscopy, 2006, 37(1-3): 277.
[27] Jr G J T. Annual Review of Biophysics & Biomolecular Structure, 1999, 28(28): 1.
[28] Ahmed Z, Beta I A, Mikhonin A V, et al. Journal of the American Chemical Society, 2005, 127(31): 10943.
[29] Wen Z Q, Overman S A, Jr T G. Biochemistry, 1997, 36(25): 7810.
[30] Laigle A, Amirand C, Sureau F, et al. Applied Spectroscopy, 1990, 44(6): 1047.
[31] Harz M, Krause M, Bartels T, et al. Analytical Chemistry, 2008, 80(4): 1080.
[32] Ramser K, Logg K, Enger J, et al. Journal of Biomedical Optics, 2004, 9(3): 593.
[33] Spiro T G, Strekas T C. Journal of the American Chemical Society, 1974, 5(14): 338.
[34] Ioannou A, Pinakoulaki E, Ioannou A, et al. Journal of Molecular Structure, 2017, 1152: 257.
[35] Hamada K, Fujita K, Smith N I, et al. Journal of Biomedical Optics, 2008, 13(4): 044027.
[36] Li Y, Heo J, Lim C K, et al. Biomaterials, 2015, 53: 25.
[37] Kuzmin A N, Pliss A, Lim C K,et al. Scientific Reports, 2016, 6: 28483.
[38] Emmons E D, Tripathi A, Guicheteau J A, et al. Journal of Physical Chemistry A, 2013, 117(20): 4158.
[39] And Y A G, Gupta Y M. Journal of Physical Chemistry A, 2001, 105(25): 6197.
[40] Waterland MR, Kelley A M. Journal of Chemical Physics, 2000, 113(16): 6760.
[41] Waterland M R, Stockwell D, Kelley A M. Journal of Chemical Physics, 2001, 114(14): 6249.
[42] Lewis M L, Lewis I R, Griffiths P R. Vibrational Spectroscopy, 2005, 38(1-2): 17.
[43] Moore D S, Lee K Y, Hagelberg S I. Journal of Energetic Materials, 2007, 26(1): 70.
[44] Tuschel D D, Mikhonin A V, Lemoff B E, et al. Applied Spectroscopy, 2010, 64(4): 425.
[45] Yellampelle B, Asher S, Lemoff B. Proc. of SPIE, 2011, 8018(1): 801819.
[46] Wang L, Hall W K. Journal of Catalysis, 1982, 77(1): 232.
[47] Xiong G, Li C, Feng Z, et al. Journal of Catalysis, 1999, 186(1): 234.
[48] Frey G L, Tenne R , Matthews M J, et al. Phys. Rev. B, 1999, 60(60).
[49] Élodie B, Afanasiev P, Berhault G, et al. Comptes Rendus-Chimie, 2016, 19(10): 1310.
[50] Bayazit M K, Coleman K S. Chemistry An Asian Journal, 2012, 7(12): 2925.
[51] Kazaoui S, Minami N, Kataura H, et al. Synthetic Metals, 2001, 121(1): 1201.
[52] Bayazit M K, Clarke L S, Coleman K S, et al. Journal of the American Chemical Society, 2010, 132(44): 15814.
[53] Laing S, Hernandezsantana A, Sassmannshausen J, et al. Analytical Chemistry, 2011, 83(1): 297.
[54] Liu X, Chao D, Zhang Q, et al. Scientific Reports, 2015, 5: 15665.
[55] Pan Z, Chou I, Burruss R. Green Chemistry, 2009, 11(8): 1105~.
[56] Frosch T, Yan D, Popp J. Analytical Chemistry, 2013, 85(13): 6264.
[57] Yin J H, Xiao Z Y, Li Z W. Vibrational Spectroscopy, 2012, 62: 7.
[58] Gonzálvez A G, Martínez N, Telle H H, et al. Chemical Physics Letters, 2013, 559(7): 26.
[59] Yin Y, Li Q, Ma S, et al. Analytical Chemistry, 2017, 89(3): 1551.
[60] Feuillie C, Merheb M M, Gillet B, et al. Plos One, 2014, 9(12): 0114148.
[61] Harmsen S, Wall M A, Huang R, et al. Nature Protocols, 2017, 12(7): 1400.
[62] Wang C, Tauber M J. Journal of the American Chemical Society, 2010, 132(40): 13988.
[63] Liu X L, Liu H N, Tan P H. Review of Scientific Instruments, 2017, 88(8): 083114. |
[1] |
LENG Jun-qiang, LAN Xin-yu, JIANG Wen-shuo, XIAO Jia-yue, LIU Tian-xin, LIU Zhen-bo*. Molecular Fluorescent Probe for Detection of Metal Ions[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2002-2011. |
[2] |
LI Shuo1, 2, WANG Jun-xing1, HE Yue1, LI Zheng-qiang2, SUN Cheng-lin1*. The Effect of Resonance Effect and Electron-Phonon Coupling on Resonance Raman Spectra of Linear Polymers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 454-458. |
[3] |
LI Shuo1, 3, NI Mu-cui1, GUO Xin1, LI Hai-ying1, MAO Jun-gang2, ZHANG Jin-bao1, LI Yu1, WANG Zhi-jun1, SUN Cheng-lin1, LI Zuo-wei1, LI Zheng-qiang3, HE Yue1*. A Study of the Distribution of β-Carotene in Different Parts of Radishes by Carbon-Carbon Double Bond[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(03): 899-904. |
[4] |
GONG Nan1, CAO Xian-wen1, SUN Cheng-lin1, FANG Wen-hui3, YUAN Ju-hui2, GAO Shu-qin1, LI Zuo-wei1, CHEN Wei2*, FU Hao-yang1*. Effects of External Fields on CC Atomic Vibrations Modulated by Electron Band Gap[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(08): 2462-2467. |
[5] |
LU Shu-hua1, 2*, WANG Yin-shu3. Developments in Detection of Explosives Based on Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1412-1419. |
[6] |
LUO Yun-han1, XU Meng-yun1, CHEN Xiao-long1, TANG Jie-yuan1, WANG Fang1, ZHANG Yi-long2, HE Yong-hong2, CHEN Zhe1* . Performance of Wavelength Modulation Surface Plasmon Resonance Biosensor[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(05): 1178-1181. |
[7] |
ZHANG Xue2, SUN Mei-jiao2, LI Shuo2, LIU Tie-cheng1, 2*, SUN Cheng-lin1, 2, LI Zuo-wei2 . Resonance Raman Spectra of Linear Polymer Molecule [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(05): 1275-1278. |
[8] |
OUYANG Shun-li1,2,ZHOU Mi2,CAO Biao2,MEN Zhi-wei2, GAO Shu-qin2,LI Zuo-wei1,2*,LU Guo-hui2, YANG Jian-ge2,3. Lycopene and β-Carotene Content in Tomato Analyzed by the Second Harmonic[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2009, 29(12): 3362-3364. |
[9] |
SHEN Fei, YING Yi-bin*. Applications of Terahertz Spectroscopy and Imaging Techniques in Food Safety Inspection [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2009, 29(06): 1445-1449. |
[10] |
LIN Hai-bo, XU Xiao-xuan*,WANG Bin, WU Bin-lin, XU Jia-lin, YU Gang, ZHANG Cun-zhou . Study of Poly (3,4-Ethylene Dioxythiophene):Poly (Styrene Sulfonate) by In-Situ Resonance Raman Spectroscopy [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2006, 26(04): 646-648. |
[11] |
YIN Jian-hua1,LI Zuo-wei1*,REN Chun-nian2,ZHANG Liu-yang1 . Visible Absorption Spectra and Resonance Raman Spectra of n-π* Singlet-Triplet Transition of p-Benzoquinone in CS2 [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2005, 25(11): 1821-1823. |
|
|
|
|