|
|
|
|
|
|
Research Progress of Detection Based on Hydrogel Surface Enhanced
Raman Spectroscopy (SERS) Substrate |
WANG De-ying1, 2, SHENG Wan-li3, ZOU Ming-qiang1, PEI Jia-huan1, 2, LUO Yun-jing2, QI Xiao-hua1* |
1. Chinese Academy of Inspection and Quarantine, Beijing 100123,China
2. Department of Environment and Life, Beijing University of Technology, Beijing 100124,China
3. Hohhot Customs and Technology Center, Huhhot 010020,China
|
|
|
Abstract Surface-enhanced Raman spectroscopy(SERS) has unique advantages such as ultra-high sensitivity, fingerprint information, small samples, and non-destructive detection. The design and preparation of a SERS substrate with excellent reproducibility and stability are key factors in the further development of SERS detection technology. Hydrogel is a new type of encapsulation material; its cross-linked polymer network has a three-dimensional layered structure that can retain a large amount of water and has a good blocking effect on impurities and strong anti-interference ability. Hydrogel SERS substrate has many advantages, such as low cost, high sensitivity, rapid detection, and high throughput. In this review, the research process of SERS substrate, the advantages of hydrogel SERS substrate, and the application of hydrogel SERS substrate in the field of food, biology, and environmental detection are mainly reviewed to provide a new reference for the preparation of hydrogel SERSsubstrate. First, for the SERS substrate research process, early fixed metal nanoparticles(MNPs) rigid solid substrate, precious MNPs tend to oxidate and aggregate. SERS substrate has poor reproducibility, so it cannot analyze the surface rough samples. In the SERS substrate with MNPs modified on the flexible support material, MNPs are easy to separate in the detection process, and the sensitivity and stability of the SERS substrate are poor. The hydrogel is combined with a plasma nanostructure to obtain a SERS substrate with good uniformity and stability. Hydrogel, as the protective layer of MNPs, provides reliable size and charge selectivity for SERS analysis while maintaining high permeability.Furthermore, hydrogel SERS substrate can achieve in situ detection of the target without sample pretreatment, biocompatible composite hydrogels can be directly detected in vivo, and DNA hydrogel substrate can be accurately recognized, hydrogel modified with multiple antibodies allow for the detection of multiple analytes simultaneously, microgel with adjustable mesh size have a selective sieving effect on the target, and 3D nanostructured hydrogel provides more adsorption hotspots. The prepared hydrogel SERS particles, chips-, and patches show great potential for on-site trace analysis in food safety, biomedicine, and environmental monitoring. In conclusion, preparing hydrogel SERS substrates has good development prospects and can provide new references for future analysis and detection fields.
|
Received: 2023-05-26
Accepted: 2024-01-05
|
|
Corresponding Authors:
QI Xiao-hua
E-mail: qixh2000@126.com
|
|
[1] Wang S Y, Shi X C, Zhu G Y, et al. Trends in Food Science and Technology, 2021, 116: 583.
[2] Yuan C J, Fang J, de la Chapelle M L, et al. TrAC Trends in Analytical Chemistry, 2021, 143: 116401.
[3] Kitaw S L, Birhan Y S, Tsai H C. Environmental Research, 2023, 221: 115247.
[4] Kannan P K, Shankar P, Blackman C, et al. Advanced Materials, 2019, 31(34): 1803432.
[5] Liu J J, Qu S X, Suo Z G, et al. National Science Review, 2021, 8(2): 254.
[6] Xing C C, Zhong S C, Liu D L, et al. Advanced Materials Interfaces, 2021, 8(18): 2101055.
[7] Guo R R, Yu D S, Wang S, et al. Soft Matter, 2023, 19: 1465.
[8] Du X W, Zhou J, Shi J F, et al. Chemical Reviews, 2015, 115: 13165.
[9] Jia B, Li G W, Cao E T, et al. Materials Today Bio, 2023, 19: 100582.
[10] Qu J, Zhao X, Ma P X, et al. Acta Biomaterialia, 2017, 58: 168.
[11] Luo Y N, Tan J Y, Zhou Y, et al. International Journal of Biological Macromolecules, 2023, 231: 123308.
[12] Lou J Z, Mooney D J. Nature Reviews Chemistry, 2022, 6: 726.
[13] Hua M T, Wu S W, Ma Y F, et al. Nature, 2021, 590: 594.
[14] Wang H Y, Wang X Y, Lai K Q, et al. Biosensors-Basel, 2023, 13(3): 320.
[15] Cui Y D, Li D, Gong C, et al. ACS Nano, 2021, 15(8): 13712.
[16] Tamura H, Furuike T, Nair S V, et al. Carbohydrate Polymers, 2011, 84(2): 820.
[17] Su R H, Li G K, Xiao X H. Analytical Chemistry, 2023, 95(15): 6399.
[18] Ye Z L, Yao H F, Zhang Y, et al. Analytica Chimica Acta, 2023, 1263: 341285.
[19] Wang W X, Chen Y M, Xiao C X, et al. Chemical Engineering Journal, 2023, 474: 145953.
[20] Guo J J, Luo Y Q, Yang C X, et al. Optics Letters, 2018, 43(21): 5443.
[21] Pilot R, Signorini R, Durante C, et al. Biosensors, 2019, 9: 57.
[22] Ding S Y, Yi J, Li J F, et al. Nature Reviews Materials, 2016, 1: 16021.
[23] Zheng H J, Ni D J, Yu Z, et al. Sensors and Actuators B: Chemical, 2016, 231: 423.
[24] Lapresta-Fernández A, Athanasopoulou E N, Silva P J, et al. Journal of Colloid and Interface Science, 2022, 616: 110.
[25] Liu J, Zhou J, Tang B, et al. Applied Surface Science, 2016, 386: 296.
[26] Li H M, Wang Q, Gao N N, et al. Applied Surface Science, 2021, 545: 148992.
[27] Zhao L, Deng C, Xue S, et al. Chemical Engineering Journal, 2020, 402: 126223.
[28] Chauhan P, Bhargava A, Kumari R, et al. Drug Discovery Today, 2022, 27(8): 2121.
[29] Huang J L, He Z B, Liu Y S, et al. Applied Surface Science, 2019, 478: 793.
[30] Mandal P, Tewari B S. Surfaces and Interfaces, 2022, 28: 101655.
[31] Mandelbaum Y, Mottes R, Zalevsky Z, et al. Sensors, 2020, 20(18): 5123.
[32] Betz J F, Yu W W, Cheng Y, et al. Physical Chemistry Chemical Physics, 2014, 16(6): 2224.
[33] Ansah I B, Kim S, Yang J Y, et al. Laser and Photonics Reviews, 2021, 15(12): 2100316.
[34] Lee S H, Kim S H, Yang J Y, et al. International Journal of Molecular Sciences, 2022, 23(2): 1004.
[35] Wu C C, Li F, Lv F, et al. Materials Research Express, 2021, 8(1): 015008.
[36] Fateixa S, Soares S F, Daniel-da-Silva A L, et al. Analyst, 2015, 140: 1693.
[37] Jeon Y H, Kim D B, Kwon G M, et al. Carbohydrate Polymers, 2021, 272: 118470.
[38] Mitomo H, Horie K, Matsuo Y, et al. Advanced Optical Materials, 2016, 4(2): 259.
[39] Wang K Q, Yue Z L, Fang X, et al. Science of the Total Environment, 2023, 856: 159108.
[40] Li H L, Men D D, Sun Y Q, et al. Journal of Colloid and Interface Science, 2017, 505: 467.
[41] Park S G, Ahn M S, Oh Y J, et al. BioChip Journal, 2014, 8(4): 289.
[42] You Y H, Nagaraja A T, Biswas A, et al. IEEE Sensors Journal, 2017, 17(4): 941.
[43] Parnsubsakul A, Ngoensawat U, Wutikhun T, et al. Carbohydrate Polymers, 2020, 235: 115956.
[44] Chen Q, Tian R, Liu G, et al. Biosensors and Bioelectronics, 2022, 207: 114187.
[45] Manikas A C, Papa A, Causa F, et al. RSC Advances, 2015, 5: 13507.
[46] Liu B, Zhang D, Ni H B, et al. ACS Applied Materials and Interfaces, 2018, 10(1): 21.
[47] Lin B Y, Wang Y L, Yao Y Y, et al. Analytical Chemistry, 2021, 93(49): 16727.
[48] Kim Y H, Kim D J, Lee S, et al. Small, 2019, 15(52): 1905076.
[49] Ouyang L, Zhu L H, Jiang J Z, et al. RSC Advances, 2015, 5(3): 2231.
[50] Wang C, Wong K W, Wang Q, et al. Talanta, 2019, 191(1): 241.
[51] Feng C, Wang X D, Yang J D, et al. ACS Applied Nano Materials, 2022, 5(4): 5398.
[52] Sun D, Cao F H, Wang H M, et al. Sensors and Actuators B: Chemical, 2021, 327: 128943.
[53] Chang R, Wang T, Liu Q, et al. Langmuir, 2022, 38(45): 13822.
[54] Hu B X, Sun D W, Pu H B, et al. Food Chemistry, 2023, 412: 135332.
[55] Wang X M, Chen C, Waterhouse G I N, et al. Food Chemistry, 2022, 393:133413.
[56] Almohammed S, Alruwaili M, Reynaud E G, et al. ACS Applied Nano Materials, 2019, 2(8): 5029.
[57] Ouyang L, Zhu L H, Ruan Y F, et al. Journal of Materials Chemistry C, 2015, 3(29): 7575.
[58] Ouyang L, Jiang Z Y, Wang N, et al. Sensors, 2017, 17(7): 1601.
[59] Cao Q H, Chen C, Huang J, et al. Analyst, 2022, 147(16): 3652.
[60] Kim S, Ansah I B, Park J S, et al. Sensors and Actuators B: Chemical, 2022, 358: 131504.
[61] Wang Q, Hu Y J, Jiang N N, et al. Bioconjugate Chemistry, 2020, 31 (3): 813.
[62] He X, Zhou X, Liu W, et al. Langmuir, 2020, 36(11): 2930.
[63] Cao J Y, Hu S, Tang W X, et al. ACS Sensors, 2023, 8(5): 1929.
[64] Zhang J X, Zhu X J, Chen M M, et al. Analyst, 2022, 147(12): 2802.
[65] Yi X, Yuan Z S, Yu X, et al. ACS Applied Materials and Interfaces, 2023, 15(4): 4873.
|
[1] |
ZHAO Jing-rui1, WANG Ya-min1, YUAN Yu-xun1, YU Jing1, ZHAO Ming-hui1, DONG Juan1, 3, SUN Jing-tao1, 2, 3, 4*. Study on SERS Detection of Ethyl Carbamate in Grape Spirit[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(09): 2467-2475. |
[2] |
WEI Yu-lan, ZHANG Chen-jie, YUAN Ya-xian*, YAO Jian-lin*. In-Situ SERS Monitoring of SPR-Catalyzed Coupling Reaction of
p-Nitroiodobenzene on Noble Metal Nanoparticles[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(09): 2482-2487. |
[3] |
NI Xiao-fang1, 3, ZHANG Chang-bo1, 2, 3*, TANG Xiao-yong2*. Pattern Recognition-Based X-Ray Fluorescence Spectroscopy for Rapid Detection of Heavy Metals in Soil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(09): 2692-2700. |
[4] |
LI Chang-ming1, GU Yi-fan2, ZHANG Hong-chen1, SONG Shao-zhong3*, GAO Xun2*. The Surface Enhanced Raman Spectroscopy Characteristics of Cyromazine Molecule Based on Density Function Theory[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1566-1570. |
[5] |
SI Min-zhen1, 2, WANG Min1, 2, LI Lun1, 2, YANG Yong-an1, 2, ZHONG Jia-ju3, YU Cheng-min3*. The Main Ingredients Analysis and Rapid Identification of Boletuses Based on Surface-Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1648-1654. |
[6] |
HUANG Li-jun1, ZHUANG Shun-qian2, FENG Yong-wei1, YANG Fang-wei2, SUN Zhen1, XIE Yun-fei2*, XUE Qing-hai1. Simultaneous Determination of Five Banned Sartan Compounds in Antihypertensive Health Food Using Thin-Layer Chromatography Combined With Surface-Enhanced Raman Spectroscopy (TLC-SERS)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(05): 1354-1363. |
[7] |
LIU Zong-yi1, 2, ZHANG Cai-hong1, 2, JIANG Jian-kang1, 2, SHEN Bin-guo3, DING Yan-fei1, 2, ZHANG Lei-lei1, 2*, ZHU Cheng1, 2*. Rapid Determination of Total Flavonoids in Dendrobium Officinale Based on Raman Spectroscopy and CNN-LSTM Deep Learning Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 1018-1024. |
[8] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
[9] |
LU Wen-jing, FANG Ya-ping, LIN Tai-feng, WANG Hui-qin, ZHENG Da-wei, ZHANG Ping*. Rapid Identification of the Raman Phenotypes of Breast Cancer Cell
Derived Exosomes and the Relationship With Maternal Cells[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3840-3846. |
[10] |
GUO He-yuanxi1, LI Li-jun1*, FENG Jun1, 2*, LIN Xin1, LI Rui1. A SERS-Aptsensor for Detection of Chloramphenicol Based on DNA Hybridization Indicator and Silver Nanorod Array Chip[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3445-3451. |
[11] |
LI Wen-wen1, 2, LONG Chang-jiang1, 2, 4*, LI Shan-jun1, 2, 3, 4, CHEN Hong1, 2, 4. Detection of Mixed Pesticide Residues of Prochloraz and Imazalil in
Citrus Epidermis by Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3052-3058. |
[12] |
GUO Ge1, 3, 4, ZHANG Meng-ling3, 4, GONG Zhi-jie3, 4, ZHANG Shi-zhuang3, 4, WANG Xiao-yu2, 5, 6*, ZHOU Zhong-hua1*, YANG Yu2, 5, 6, XIE Guang-hui3, 4. Construction of Biomass Ash Content Model Based on Near-Infrared
Spectroscopy and Complex Sample Set Partitioning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3143-3149. |
[13] |
ZHAO Ling-yi1, 2, YANG Xi3, WEI Yi4, YANG Rui-qin1, 2*, ZHAO Qian4, ZHANG Hong-wen4, CAI Wei-ping4. SERS Detection and Efficient Identification of Heroin and Its Metabolites Based on Au/SiO2 Composite Nanosphere Array[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3150-3157. |
[14] |
SU Xin-yue1, MA Yan-li2, ZHAI Chen3, LI Yan-lei4, MA Qian-yun1, SUN Jian-feng1, WANG Wen-xiu1*. Research Progress of Surface Enhanced Raman Spectroscopy in Quality and Safety Detection of Liquid Food[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2657-2666. |
[15] |
CHENG Fang-beibei1, 2, GAN Ting-ting1, 3*, ZHAO Nan-jing1, 4*, YIN Gao-fang1, WANG Ying1, 3, FAN Meng-xi4. Rapid Detection of Heavy Metal Lead in Water Based on Enrichment by Chlorella Pyrenoidosa Combined With X-Ray Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2500-2506. |
|
|
|
|