|
|
|
|
|
|
Progress on Terahertz Spectroscopy Detection of Glass Transition of
Polymers |
KE Zhi-lin1, DONG Bing2, LING Dong-xiong2*, WEI Dong-shan2, 3* |
1. School of Mechanical Engineering,Dongguan University of Technology, Dongguan 523808,China
2. School of Electrical Engineering and Intelligentization,Dongguan University of Technology,Dongguan 523808,China
3. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences,Shenzhen 528055, China
|
|
|
Abstract The polymer glass transition, as a transition between the glassy and highly elastic states of amorphous polymers, has an important impact on material properties, especially mechanical properties. Terahertz spectroscopy, as a novel spectroscopic analysis technique with the advantages of non-contact, rapidity, and high sensitivity, shows important potential for application in polymer glass transition studies. By summarizing and analyzing the findings in the literature in the last 15 years, this paper aims to provide a comprehensive understanding of the current status of the application of terahertz spectroscopy in this field and to look forward to its future development. Firstly, the properties of the polymer glass transition are introduced, and traditional measurement methods and the limitations they face, such as thermal analysis, dynamic mechanical analysis, and infrared spectroscopy, are explored. Researchers have begun to look for new study methods to compensate for these limitations. Terahertz spectroscopy can provide both spectral and phase information, allowing direct measurement of refractive index and dielectric constant and reflecting the free volume change of the polymer chain, which is why the THz spectroscopy can detect the glass transition of polymers. Subsequently, the progress in applying terahertz spectroscopy in studying polymer glass transition in recent years is summarized. Results of these studies show that terahertz spectroscopy can accurately determine the glass transition temperatures, provide microscopic information about the structure and conformation, and reveal the glass transition mechanism and dynamics behavior of polymers, including poly formaldehyde, polyamide, poly (ε-caprolactone), and polylactic acid. Moreover, this paper points out the existing problems of terahertz spectroscopy, including the bandwidth limitations and high cost of terahertz spectrometers. Therefore, future research needs further to improve the performance of terahertz sources and instruments, develop more efficient data analysis methods, and explore the potential of terahertz spectroscopy for industrial applications. Overall, terahertz spectroscopy, as an emerging research tool, has made positive advances in the field of polymer glass transition and can enable rapid and sensitive detection of polymers as well as precise structural analysis.
|
Received: 2023-08-04
Accepted: 2023-12-15
|
|
Corresponding Authors:
LING Dong-xiong, WEI Dong-shan
E-mail: lingdx@dgut.edu.cn; ds.wei@siat.ac.cn
|
|
[1] Mei B C, Lin T W, Sheridan G S, et al. Macromolecules, 2022,55:4159.
[2] Kharintsev S S, Chernykh E A, Shelaev A V, et al. ACS Photonics, 2021, 8: 1477.
[3] El Cury-Silva T, Nunes M E G, Casalechi M, et al. Cryobiology, 2021,103:7.
[4] Hu Y, Wang X Z, Qi Z H, et al. Advanced Functional Materials, 2021,31: 2106529.
[5] Suzuki Y, Shinagawa Y, Kato E, et al. Macromolecules, 2021,54:3293.
[6] Szymoniak P, Qu X T, Abbasi M, et al. Soft Matter, 2021,17:2775.
[7] Mochida T, Qiu Y, Sumitani R, et al. Inorganic Chemistry, 2022,61:14368.
[8] Groborz O, Kolouchova K, Pankrac J, et al. Advanced Healthcare Materials, 2022,11: 2201344.
[9] Kim S Y, Liu S L Z, Sohn S, et al. Nature Communications, 2021, 12: 3768.
[10] Hultmark S, Cravcenco A, Kushwaha K, et al. Science Advances, 2021,7: eabi4659.
[11] Abate A A, Cangialosi D, Napolitano S. Thermochimica Acta, 2022,707: 179084.
[12] He L, Chen T, Zhang Y, et al. Composites Part B: Engineering, 2022,230:109553.
[13] Alcobaça E, Mastelini S M, Botari T, et al. Acta Materialia, 2020,188:92.
[14] Giels M, Hertel T, Gijbels K, et al. Cement and Concrete Research, 2022,155: 106739.
[15] Ali M A, Liu X F, Xu B B, et al. ACS Materials Letters, 2022,4:2613.
[16] Jiang Y, Hadjichristidis N. Angewandte Chemie-International Edition, 2021,60:331.
[17] Niu Z, Wu R Y, Yang Y X, et al. Polymers, 2021,228: 123864.
[18] Chen G, Tao L, Li Y. Polymers, 2021, 13: 1898.
[19] Deng M, Meng H F, Xu X P, et al. Chemical Engineering Journal, 2022,440: 135975.
[20] Botiz I, Durbin M M, Stingelin N. Macromolecules, 2021, 54: 5304.
[21] Yang J X, Feng M, Chen Z Y, et al. Materials Research Bulletin, 2023,158: 112046.
[22] Ali M A, Liu X F, Qiu J R. Journal of Non-Crystalline Solids, 2022,597: 121936.
[23] Gao M X, Wang Y C, Li S, et al. Composites Communications, 2022,32: 101165.
[24] Mochida T, Qiu Y, Funasako Y, et al. Chemical Communications, 2022,58:6725.
[25] Wietzke S, Jansen C, Jung T, et al. Optics Express, 2009,17:19006.
[26] Wietzke S, Jansen C, Reuter M, et al. Journal of Molecular Structure, 2011,1006:41.
[27] Suzuki H, Ishii S, Sato H, et al. Chemical Physics Letters, 2013,575:36.
[28] Suzuki H, Ishii S, Otani C, et al. European Polymer Journal, 2015,67:284.
[29] Sibik J, Sargent M J, Franklin M, et al. Molecular Pharmaceutics, 2014,11:1326.
[30] Komatsu M, Mizuno M, Saito S, et al. Journal of Applied Physics, 2015,117: 133102.
[31] Mori T, Igawa H, Okada D, et al. Journal of Molecular Structure, 2015,1090:93.
[32] Lian Z, Niu H, Li S T, et al. IEEE Transactions on Terahertz Science and Technology, 2019, 9: 651.
[33] Shmool T A, Zeitler J A. Polymer Chemistry, 2019, 10: 351.
[34] Forrest J, Dalnoki-Veress K. ACS Macro Letters, 2014, 3: 310.
[35] Farman N, Mumtaz M, Mahmood M A, et al. Optical Materials, 2020,99: 109534.
[36] Zhu H F, Li J, Du L H, et al. Apl. Materials, 2022, 10: 031112.
[37] Kitai M S, Nazarov M M, Nedorezova P M, et al. Radiophysics and Quantum Electronics, 2017,60:409.
[38] Mumtaz M, Mahmood M A, Khan S D, et al. Optical Materials, 2019,91:126.
[39] Tokoro H, Nakabayashi K, Nagashima S, et al. Bulletin of the Chemical Society of Japan, 2022,95:538.
[40] Engelbrecht S, Pichot V, Goepfert T, et al. Polymer, 2022,257: 125285.
[41] Zhang M, Zhang H F, Jiang Q H, et al. ACS Applied Materials & Interfaces, 2021,13:53492.
[42] Lin H Y, Russell B P, Bawuah P, et al. Analytical Chemistry, 2021,93:2449.
[43] Santitewagun S, Thakkar R, Zeitler J A, et al. Molecular Pharmaceutics, 2022. doi: 10.1021/acs.molpharmaceut.2c00163.
[44] Abina A, Puc U, Zidansek A. Journal of Environmental Management, 2022, 315: 115118.
[45] Zhong J L, Nakagawa S, Kaczmarska K, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022,266: 120414.
[46] Nguyen T, Bavarian M. Industrial & Engineering Chemistry Research, 2022,61:12690.
[47] Bawuah P, Zeitler J A. Trac-Trends in Analytical Chemistry, 2021, 139: 116272.
[48] Bian Y J, Zhu Z Q, Zhang X, et al. Food Chemistry, 2023, 406: 135043.
[49] Tostanoski N J, Heilweil E J, Wachtel P F, et al. Journal of Non-Crystalline Solids, 2023,600: 122020.
|
[1] |
YANG Bai-yu, LI Lei, WANG Wei-yu, WU Xiao-liang, WANG Cui-xiang, FAN Qi*, LIU Jing, XU Cui-lian. Determination of Liquid Optical Constants by Double Thickness
Transmission Method Based on Polynomial Root Finding[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(10): 2733-2738. |
[2] |
WENG Wen-ting, JI Quan-tong, WANG Ya-ting, CHEN Hua-jie, CHEN Shao-yun. Synthesis and Properties of Charge-Adjustable Carbonized Polymer Dots and the Study of Sensing for Quercetin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(09): 2523-2530. |
[3] |
HE Yu-xin1, YANG Li-jun1*, YU Hua2, CHEN Qi-yu1, CHENG Li1, LIAO Rui-jin1. New Nondestructive Method of Methanol Detection in Insulating Oil Based on Terahertz Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(05): 1405-1411. |
[4] |
TAO Chuan-qi1, 2, 3, ZHANG Hua1, 2, 3*, HUANG Jian1, 2, 3, XI Shan-shan1, 2, 3, HE Chun-hua1, 2, 3, LUO Tao1, 2, 3, WANG Jin-hua1, 2, 3, ZHANG Jia-mei1, 2, 3, MA Mu-ye1. Effects of Chlortetracycline and Oxytetracycline on Microbial EPS During Biological Phosphorus Removal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 1191-1200. |
[5] |
WANG Jia-zheng, LIU Jia, SUN Wei-xin, ZHOU Jian-zhang, WU De-yin*, TIAN Zhong-qun. Simulative Study of Multiband Perfect Absorption and Sensing Properties of Plasmonic Silver Film Coupled Si3N4 Nanocavities in Visible-NIR
Region[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(03): 663-669. |
[6] |
XU Qiu-yi1, 3, 4, ZHU Wen-yue3, 4, CHEN Jie2, 3, 4, LIU Qiang3, 4 *, ZHENG Jian-jie3, 4, YANG Tao2, 3, 4, YANG Teng-fei2, 3, 4. Calibration Method of Aerosol Absorption Coefficient Based on
Photoacoustic Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 88-94. |
[7] |
YU Yang1, ZHANG Zhao-hui1, 2*, ZHAO Xiao-yan1, ZHANG Tian-yao1, LI Ying1, LI Xing-yue1, WU Xian-hao1. Effects of Concave Surface Morphology on the Terahertz Transmission Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2843-2848. |
[8] |
ZHOU Ao1, 2, YUE Zheng-bo1, 2, LIU A-zuan1, 2, GAO Yi-jun3, WANG Shao-ping3, CHUAI Xin3, DENG Rui1, WANG Jin1, 2*. Spectral Analysis of Extracellular Polymers During Iron Dissimilar
Reduction by Salt-Tolerant Shewanella Aquimarina[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1320-1328. |
[9] |
CHU Zhi-hong1, 2, ZHANG Yi-zhu2, QU Qiu-hong3, ZHAO Jin-wu1, 2, HE Ming-xia1, 2*. Terahertz Spectral Imaging With High Spatial Resolution and High
Visibility[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 356-362. |
[10] |
ZHANG Tian-yao1, 2, LI Bo-yang1, LI Xing-yue1, LI Ying1, WU Xian-hao1, ZHAO Xiao-yan1, ZHANG Zhao-hui1*. Refractive Index Measurement Using Continuous Wave Terahertz
Frequency-Domain Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 495-502. |
[11] |
Salima Rahmat1, 2, LI Jia-jia1, Arzugul Muslim1, 2*, Kalbinur Matsawut1. Synthesis and Properties of Novel Benzidine-Based Narrow Band Gap Conjugated Polymer From Simple Monomers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3751-3756. |
[12] |
LU Xue-jing1, 2, GE Hong-yi2, 3, JIANG Yu-ying2, 3, ZHANG Yuan3*. Application Progress of Terahertz Technology in Agriculture Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3330-3335. |
[13] |
TANG Xin, ZHOU Sheng-ling*, ZHU Shi-ping*, MA Ling-kai, ZHENG Quan, PU Jing. Analysis and Identification of Terahertz Tartaric Acid Spectral
Characteristic Region Based on Density Functional Theory and
Bootstrapping Soft Shrinkage Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2740-2745. |
[14] |
LI Yan1, LIU Qi-hang2, 3, HUANG Wei1, DUAN Tao1, CHEN Zhao-xia1, HE Ming-xia2, 3, XIONG Yu1*. Terahertz Imaging Study of Dentin Caries[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2374-2379. |
[15] |
CHEN Yan-ling, CHENG Liang-lun*, WU Heng*, XU Li-min, HE Wei-jian, LI Feng. A Method of Terahertz Spectrum Material Identification Based on Wavelet Coefficient Graph[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3665-3670. |
|
|
|
|