|
|
|
|
|
|
Simulative Study of Multiband Perfect Absorption and Sensing Properties of Plasmonic Silver Film Coupled Si3N4 Nanocavities in Visible-NIR
Region |
WANG Jia-zheng, LIU Jia, SUN Wei-xin, ZHOU Jian-zhang, WU De-yin*, TIAN Zhong-qun |
State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS) and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
|
|
|
Abstract Metamaterials with multiband optical perfect absorption effect are highly desired in applications like optical filtering and refractive index sensing. This paper proposes a multi-narrowband perfect metamaterial absorber composed of a Si3N4 dielectric nanocavity array on a silver film. Simulation by finite element method gives four absorption bands with peak absorptances up to 99.9% and narrow bandwidth down to 0.74 nm. These absorption bands come from surface lattice resonance mode and three surface plasmon polariton modes. Besides, these modes are highly susceptible to changes in geometrical and optical parameters, which means absorption peaks can be tuned in the visible-near infrared range. The refractive index sensing capability of the structure was also investigated, giving 347 nm per refractive index unit sensitivity and 469 figure of merit. These features make the proposed structure suitable for applications such as refractive index sensors and optical filters.
|
Received: 2023-05-25
Accepted: 2023-08-08
|
|
Corresponding Authors:
WU De-yin
E-mail: dywu@xmu.edu.cn
|
|
[1] Chen Tao, Lu Suyan, Sun Hui. Sensors, 2012, 12(3): 2742.
[2] Cheng Yongzhi, Luo Hui, Chen Fu, et al. OSA Continuum, 2019, 2(7): 2113.
[3] Koshelev K, Kivshar Y. ACS Photonics, 2021, 8(1): 102.
[4] Smith D R, Pendry J B, Wiltshire M C K. Science, 2004, 305(5685): 788.
[5] Zhou Jin, Liu Zhengqi, Liu Xiaoshan, et al. Journal of Materials Chemistry C, 2020, 8(37): 12768.
[6] Diem M, Koschny T, Soukoulis C M. Physical Review B, 2009, 79(3): 033101.
[7] AtwaterH A, PolmanA. Nature Materials, 2010, 9(3): 205.
[8] Liang Qiuqun, Wang Taisheng, Lu Zhenwu, et al. Advanced Optical Materials, 2013, 1(1): 43.
[9] Li Guijun, Li He, Jacob Y L Ho, et al. Nano Letters, 2014, 14(5): 2563.
[10] Lu Xiaoyuan, Vini Gautam, Dmitry Shishmarev, et al. Optics Express, 2020, 28(21): 31594.
[11] Chen Chen, Wang Guan, Zhang Ziyang, et al. Optics Letters, 2018, 43(15): 3630.
[12] Baqir M A, Choudhury P K, Fatima T, et al. Optik, 2019, 180:832.
[13] Wang Dongxing, Zhu Wenqi, Michael D B, et al. Scientific Reports, 2013, 3(1): 2867.
[14] Mandal P. Plasmonics, 2016, 11(1): 223.
[15] Guddala S, Rao D N, Ramakrishna S A. Journal of Optics, 2016, 18(6): 065104.
[16] Ding Songyuan, Yi Jun, Li Jianfeng, et al. Nature Reviews Materials, 2016, 1(6): 16021.
[17] Landy N I, Sajuyigbe S, Mock J J, et al. Physical Review Letters, 2008, 100(20): 207402.
[18] Zhao Lei, Liu Han, He Zhihong, et al. Optics Communications, 2018, 420:95.
[19] Liang Cuiping, Yi Zao, Chen Xifang, et al. Plasmonics, 2019, 15(1): 93.
[20] Zhu Weiren, Xiao Fajun, Rukhlenko I D, et al. Optics Express, 2017, 25(5): 5781.
[21] Liu Xueyao, Liu Wendong, Fang Liping, et al. Nano Research, 2016, 10(3): 908.
[22] Kang Guoguo, Wang Jue, Li Peng, et al. Plasmonics, 2015, 11(4): 1169.
[23] Ji Yiqun, Tang Chaojun, Xie Ningyan, et al. Results in Physics, 2019, 14:102397.
[24] Xu Haixia, Hu Lizhong, Lu Yanxin, et al. The Journal of Physical Chemistry C, 2019, 123(15): 10028.
[25] Wu Pinghui, Chen Zeqiang, Jile Huge, et al. Results in Physics, 2020, 16:102952.
[26] Callewaert F, Chen S, Butun S, et al. Journal of Optics, 2016, 18(7): 075006.
[27] Sun Peng, Zhou Changhe, Jia Wei, et al. Optics Communications, 2020, 459:124946.
[28] Yan M. Journal of Optics, 2013, 15(2): 025006.
[29] Zhao Ding, Meng Lijun, Gong Hanmo, et al. Applied Physics Letters, 2014, 104(22): 221107.
[30] Zou Chengjun, Withayachumnankul W, Shadrivov I V, et al. Physical Review B, 2015, 91(8): 085433.
[31] Liu Guiqiang, Nie Yiyou, Fu Guolan, et al. Nanotechnology, 2017, 28(16): 165202.
[32] Liao Yanlin, Zhao Yan. Results in Physics, 2020, 17:103072.
[33] Qu Yurui, Li Qiang, Gong Hanmo, et al. Advanced Optical Materials, 2016, 4(3): 480.
[34] Yu Chenxu, Irudayaraj J. Analytical Chemistry, 2007, 79(2): 572.
[35] Liu Zhengqi, Liu Guiqiang, Fu Guolan, et al. Optics Express, 2016, 24(5): 5020.
[36] Ou N, Shyu J H, Lee H M, et al. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2009, 27(6): 3183.
[37] Huang Yin, Liu Longju, Johnson M, et al. Nanotechnology, 2016, 27(9): 095302.
[38] Park C S, Lee S S. Scientific Reports, 2020, 10(1): 17727.
[39] Johnson P B, Christy R W. Physical Review B, 1972, 6(12): 4370.
[40] Luke K, Okawachi Y, Lamont M R E, et al. Optics Letters, 2015, 40(21): 4823.
[41] Kedenburg S, Vieweg M, Gissibl T, et al. Optical Materials Express, 2012, 2(11): 1588.
[42] Chew W C, Weedon W H. Microwave and Optical Technology Letters, 1994, 7(13): 599.
[43] Cen Chunlian, Chen Zeqiang, Xu Danyang, et al. Nanomaterials, 2020, 10(1): 95.
[44] He Xin, Jie Jinliang, Yang Junbo, et al. Optics Express, 2019, 27(11): 15298.
[45] Kravets V G, Schedin F, Grigorenko A N. Physical Review Letters, 2008, 101(8): 087403.
[46] Liu Zhengqi, Liu Guiqiang, Liu Xiaoshan, et al. Plasmonics, 2019, 15(1): 11.
[47] ZakharianA R, Moloney J V, Mansuripur M. Optics Express, 2007, 15(1): 183.
[48] GhaemiH F, Thio T, Grupp D E, et al. Physical Review B, 1998, 58(11): 6779.
[49] Pierce J R. Journal of Applied Physics, 1954, 25(2): 179.
[50] Yariv A. Electronics Letters, 2000, 36(4): 321.
[51] Collin S. Reports on Progress in Physics, 2014, 77(12): 126402.
[52] Fan Shanhui, Suh W, Joannopoulos J D. Journal of the Optical Society of America A, 2003, 20(3): 569.
[53] Haynes W M. CRC Handbook of Chemistry and Physics. Cleveland: CRC Press,2016.
[54] Liao Yanlin, Zhao Yan. Results in Physics, 2020, 17: 103072.
|
[1] |
GUAN Jian-fei, CHEN Tao. High Sensitivity Nanosensor Based on Fano Resonance in a
Metal-Dielectric-Metal Waveguide Coupled With a
Split-Ring Cavity[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1746-1751. |
[2] |
LU Yan-hua, XU Min-min, YAO Jian-lin*. Preparation and Photoelectrocatalytic Properties Study of TiO2-Ag
Nanocomposites[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1112-1116. |
[3] |
SUN Nan, TAN Hong-lin*, ZHANG Zheng-dong, REN Xiang, ZHOU Yan, LIU Jian-qi, CAI Xiao-ming, CAI Jin-ming. Raman Spectroscopy Analysis and Formation Mechanism of Carbon
Nanotubes Doped Polyacrylonitrile/Copper Cyclized to Graphite
at Room Temperature[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2983-2988. |
[4] |
LI Meng-jun1, FANG Hui2. Research of Electromagnetic Field Enhancement of Surface Plasmon
Resonant Mode in Metal Nanosphere-Nanodisc Structure[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1098-1103. |
[5] |
WANG Zhao-hui1, ZHAO Yan1, 3, 4*, FENG Chao2. Multi-Wavelength Random Lasing Form Doped Polymer Film With Embedded Multi-Shaped Silver Nanoparticle[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 38-42. |
[6] |
JIN Xiang-peng, LI Xing-jia, ZHANG Chen-jie, YUAN Ya-xian, YAO Jian-lin*. Surface Enhanced Raman Spectroscopic Investigation on SPR Catalyzed Decarboxylation of Ortho-Mercaptobenzoic Acid at Au Nanoparticles Monolayer Film[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3153-3158. |
[7] |
SHI Dong-dong1, ZHANG Yue1, SUN Cheng1, 2*. Spectral Characteristics of Asymmetric Silver Double Nanorings Surface Plasmons[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1566-1573. |
[8] |
CHEN Xiao-bo1, LI Song1, ZHAO Guo-ying2, LONG Jiang-mi1, WANG Shui-feng1, MENG Shao-hua2, WANG Jie-liang1, GUO Jing-hua1, YOU Jia-jia1, MA Yu2, YU Chun-lei3, HU Li-li3. The Silver Surface Plasmon Enhancement for Er3+ Ion Upconversion of 978 and 1 539 nm Laser in Bismuth Glass[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(09): 2721-2726. |
[9] |
CHEN Xiao-bo1, LI Song1, ZHAO Guo-ying2, LONG Jiang-mi1, GUO Jing-hua1, MENG Shao-hua2, ZHENG Dong1, WANG Shui-feng1, YOU Jia-jia1, XU Ling-zhi2, YU Chun-lei3, HU Li-li3. Luminescence Enhancement of Erbium Doped Bismuth Glass by Silver Surface Plasmon[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(02): 362-367. |
[10] |
CHEN Xiao-bo1, LI Song1, ZHAO Guo-ying2, LONG Jiang-mi1, WANG Shui-feng1, ZHENG Dong1, WU Zheng-long1, MENG Shao-hua2, GUO Jing-hua1, XU Ling-zhi2, YU Chun-lei3, HU Li-li3. Luminescence of Erbium Doped Telluride Glass Enhanced by Surface Plasmon of Metallic Silver Nanoparticles[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(07): 2293-2298. |
[11] |
LI Meng-jun1, FANG Hui2*, LI Xiao-ming2, YUAN Xiao-cong2. Characteristic of Surface Plasmon Resonance Spectrum of Metal Nanosphere-Nanodisc Gap Mode Excited the Radially Polarized Optical Vector Beam[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(01): 8-13. |
[12] |
SI Ji-zong1, LIU Yan-hong2, SUN Cheng1,3*. Spectral Characteristics at Mid-Infrared Wavelength Regime of Gold Micro-Nano Arrays Surface Plasmons[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(01): 87-95. |
[13] |
NONG Jin-peng1, 2, WEI Wei1, 2, 3*, ZHU Yong2*, TANG Lin-long3, 4, ZHANG Gui-wen2, JIANG Xiao2, CHEN Na2, WEI Da-peng3, 4. Resonance Spectra and Sensing Characteristics of Plasmons in Graphene-Covered Aluminum Nano-Grating[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(04): 997-1002. |
[14] |
WANG Meng, WANG Bin, FU Su-yang, SUN Xi-peng, HUANG Sen-peng, GUO Ting-ke, LI Hao-yu, XU Xiao-xuan*, WANG Yu-fang . Strong and Tunable Field Enhancement Obtained by Periodic Rectangular Pit Structure [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(02): 293-297. |
[15] |
YANG Shi-ling, YUE Li, JIA Zhi-jun* . Influence of Silver/Silicon Dioxide on Infrared Absorption Spectroscopy of Sodium Nitrate [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(09): 2407-2412. |
|
|
|
|