|
|
|
|
|
|
Study of the Spectral Characteristics of 3D Rotating Gliding Arc Under High Pressure |
ZHANG Lei, ZHANG Deng-cheng, YU Jin-lu*, ZHAO Bing-bing, XU Zhe-lin, CHENG Wei-da |
School of Aeronautical Engineering, Air Force Engineering University, Xi'an 710038, China
|
|
|
Abstract To investigate the influence of gas pressure on the process of gliding arc discharge, the spectral characteristics of gliding arc discharge were studied on a high-pressure discharge experimental platform. The excited state substances in gliding arc discharge are diagnosed by emission spectroscopy,and the electron density, vibration temperature and rotation temperature of gliding arc discharge under different gas pressures are calculated. The emission lines of the second positive system of nitrogen N2(C3Πu→B3Πg) and the first negative system of nitrogen N+2(B2Σ+u→X2Σ+g) are observed in the emission spectra of the gliding arc discharge. With the increase of gas pressure, the emission intensity of the emission line of the second positive system of nitrogen increases, whereas the emission intensity of the first negative system of nitrogen changes slightly. The Stark broadening method calculates the electron density in gliding arc discharge. It is found that the electron density is 1023 orders of magnitude, and the electron density increases linearly with the increase of gas pressure. The vibration temperature of sliding arc discharge is calculated using the Boltzmann diagram method for the five spectral lines of the second positive system of nitrogen molecules. The change of vibration temperature with gas pressure is not monotone. The range of vibration temperature changes is small before 0.3 MPa and increases rapidly after the gas pressure exceeds 0.3 MPa. The rotational temperature of the discharge from the gliding arc was calculated by fitting the emission lines at 390~391.6 nm in the first negative nitrogen molecules system. The rotational temperature changed significantly with the increase of gas pressure before 0.24 MPa, and the addition of rotational temperature decreased when the gas pressure exceeded 0.24 MPa.
|
Received: 2022-09-08
Accepted: 2023-10-24
|
|
Corresponding Authors:
YU Jin-lu
E-mail: smartaeroengine@163.com
|
|
[1] ZHANG Lei, YU Jin-lu, ZHAO Bing-bing, et al(张 磊,于锦禄,赵兵兵,等). Acta Physica Sinica(物理学报), 2022, 71(7): 075204.
[2] YU Jin-lu, ZHAO Bing-bing, GUO Hao, et al(于锦禄,赵兵兵,郭 昊,等). Aeroengine(航空发动机), 2022, 48(3): 52.
[3] ZHANG Lei, YU Jin-lu, CHEN Yi, et al(张 磊,于锦禄,陈 一,等). Acta Aeronautica et Astronautica Sinica(航空学报), 2021, 42(3): 124308.
[4] Zhang Lei, Zhang Dengcheng, Yu Jinlu, et al. Plasma Science and Technology, 2023, 25(3): 035502.
[5] Jennifer Martin-del-Campo, Marianna Uceda, Sylvain Coulombe, et al. Journal of CO2 Utilization, 2021, 46: 101474.
[6] Kong Xiangzhi, Wu Angjian, Fu Siming, et al. Fuel, 2021, 298: 120745.
[7] HE Li-ming, YU Jin-lu, ZENG Hao(何立明, 于锦禄, 曾 昊). The Technology of Plasma Ignition and Assisted Combustion(等离子体点火与助燃技术). Beijing: Aviation Industry Press(北京: 航空工业出版社), 2019.
[8] Deng Jun, Cui Gang, Lu Yongji, et al. Vacuum, 2023, 207: 111621.
[9] LEI Jian-ping, HE Li-ming, CHEN Yi, et al(雷建平,何立明,陈 一,等). Acta Physica Sinica(物理学报), 2020, 69(19): 195203.
[10] Yusuke Kikuchi, Tsubase Nakagawa. IEEE Transactions on Plasma Science, 2021, 49(1): 4.
[11] LIU Zhi-jie, CHEN Min, LIU Ding-xin(刘志杰,陈 旻,刘定新). High Voltage Engineering(高电压技术), 2022, 48(10): 4196.
[12] FENG Bo-wen, WANG Ruo-yu, MA Yu-peng-xue, et al(冯博文,王若愚,马雨彭雪,等). Acta Physica Sinica(物理学报), 2021, 70(9): 095201.
[13] ZENG Xin, ZHANG Shuai, BAI Han, et al(曾 鑫,张 帅,白 晗,等). Proceedings of the Chinese Society for Electrical Engineering(中国电机工程学报), 2023, doi:10.13334/j.0258-8013.pcsee.230256.
[14] Ananthanarasimhan J, Rao Lakshminarayana. Journal of Physics D: Applied Physics, 2022, 55: 245202.
[15] TIAN Yu, YU Jin-lu, JIANG Yong-jian, et al(田 裕,于锦禄,蒋永健,等). Journal of Combustion Science and Technology(燃烧科学与技术), 2021, 27(5): 562.
[16] David Staack, Bakhtier Farouk, Alexander Gutsol, et al. Plasma Sources Science and Technology, 2005, 14(4): 700.
[17] SHEN Li-hua, YU Chun-xia, YAN Bei, et al(申丽华, 于春侠, 闫 蓓,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2015, 35(3): 791.
|
[1] |
LI Rong-yi, ZHU Hai-long*. Temperature Measurement of Atmospheric-Pressure CO2 Microwave
Discharge With Optical Emission Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(03): 688-692. |
[2] |
YU Hao-zhang, WANG Fei-fan, ZHAO Jian-xun, WANG Sui-kai, HE Shou-jie*, LI Qing. Optical Characteristics of Trichel Pulse Discharge With Needle Plate
Electrode[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3041-3046. |
[3] |
TIAN Fu-chao1, CHEN Lei2*, PEI Huan2, BAI Jie-qi1, ZENG Wen2. Diagnosis of Emission Spectroscopy of Helium, Methane and Air Plasma Jets at Atmospheric Pressure[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2694-2698. |
[4] |
LI Chang-ming1, CHEN An-min2*, GAO Xun3*, JIN Ming-xing2. Spatially Resolved Laser-Induced Plasma Spectroscopy Under Different Sample Temperatures[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2032-2036. |
[5] |
LI Ru, YANG Xin, XING Qian-yun, ZHANG Yu. Emission Spectroscopy Study of Remote Ar Plasma[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 394-400. |
[6] |
WANG Wei, WANG Yong-gang*, WU Zhong-hang, RAO Jun-feng, JIANG Song, LI Zi. Study on Spectral Characteristics of Pulsed Argon Vacuum Dielectric
Barrier Discharge[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 455-459. |
[7] |
YANG Kun, CHEN Lei*, CHENG Fan-chong, PEI Huan, LIU Gui-ming, WANG Bao-huai, ZENG Wen. Emission Spectroscopy Diagnosis of Air Gliding Arc Plasma Under
Atmospheric Pressure Condition[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3006-3011. |
[8] |
LEI Bing-ying1, 2, XU Bo-ping1, 2, WANG Yi-shan1, 2, ZHU Xiang-ping1, 2, DUAN Yi-xiang3, ZHAO Wei1, 2, TANG Jie1*. Investigation of the Spectral Characteristics of Laser-Induced Plasma for Non-Flat Samples[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3024-3030. |
[9] |
GONG Zheng1, LIN Jing-jun2*, LIN Xiao-mei3*, HUANG Yu-tao1. Effect of Heating and Cooling on the Characteristic Lines of Al During Melting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 598-602. |
[10] |
LI Zheng-kai1, CHEN Lei1*, WANG Mei-qi1, SONG Peng2, 3, YANG Kun1, ZENG Wen1. Diagnosis of Atmospheric Pressure Argon/Air Needle-Ring Dielectric Barrier Discharge Emission Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3307-3310. |
[11] |
SONG Peng1,3, LI Zheng-kai2, CHEN Lei2*, WANG Xiao-fang1, LONG Wu-qiang1, ZENG Wen2. Diagnosis of Atmospheric Pressure Helium Cryogenic Plasma Jet[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1874-1879. |
[12] |
LI Zheng-kai1, CHEN Lei1*, YANG Cong1, SONG Peng2, 3, ZENG Wen1, LIU Ai-guo1, PANG Jun-yi1. A Study on Emission Spectral Diagnosis of Ar/CH4 Plasma Jet[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1398-1403. |
[13] |
LI Li-cheng1, GAO Hai-yang1, 2*, BU Ling-bing1, ZHANG Qi-lin1, WANG Zhen1. Inversion of Rotational Temperature in Airglow Layer Based on O2(0-1) Atmospheric Band Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(10): 3002-3009. |
[14] |
HE Shou-jie1*, BAO Hui-ling1, HA Jing2, ZHAO Kai-yue1, QU Yu-xiao1, ZHANG Zhao1, LI Qing1*. The Optical Characteristics of Hollow Cathode Discharge at Different Modes in Air[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(11): 3377-3382. |
[15] |
SONG Zhi-jie, XU Hao-jun, WEI Xiao-long, CHEN Zeng-hui, SONG Fei-long, ZHANG Wen-yuan. Characteristics Study and Parameters Diagnosis by Spectral Analysis of Low Pressure Argon Inductively Coupled Plasma[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(04): 1242-1246. |
|
|
|
|