|
|
|
|
|
|
Application Progress of Rare Earth Luminescent Nanomaterials in
Fingerprint Development |
DING Han |
School of Criminal Justice, China University of Political Science and Law, Beijing 102249, China
|
|
|
Abstract Since 2000, various novel nanomaterials (NMs) have been successively applied in latent fingerprint (LP) development, resulting in the emergence of NM-based development of LPs. Due to the innovation of developing materials and methods, the NM-based development of LPs has mushroomed. In the past decade, more and more research on LP development using rare earth (RE) luminescent NMs has been reported, and this has gradually become one of the hot topics in this research field. The development of LPs based on RE luminescent NMs possesses prominent advantages such as strong contrast, high sensitivity, good selectivity, and low toxicity. Therefore, it has important theoretical research values and broad practical application prospects. Recently, most papers reported in this field were research articles, while the review articles were very limited. In this review, the application progress of LF development based on RE luminescent NMs was systematically summarized from two aspects: the renewal of developing materials and the innovation of developing methods. On the renewal of developing materials, this review emphasizes the LF development based on RE down-conversion (DC) luminescent NMs, RE up-conversion (UC) luminescent NMs, and RE multi-functional nanocomposites. On the innovation of developing methods, this review focuses on LF development based on electrostatic adsorption, hydrophobic effect, chemical bonding, and aptamer recognition strategies. The trends of LP development based on RE luminescent NMs can be summarized as follows: in terms of the developing materials, they involve in the transition from DC luminescent NMs to UC luminescent NMs, from single luminescent NMs to multiple luminescent NMs, from photoluminescent NMs to multi-functional nanocomposites; in terms of the developing methods, they involve in the transition from non-specific development to high targeting development, from qualitative development of trace evidence to quantitative detection of residual substances, from physical development to chemical development. In addition, developing results are involved in the transition from effective development of trace evidence to nondestructive detection of biological evidence; developing procedures are involved in the transition from potentially toxic operation to environmentally friendly operation; developing assessments are involved in the transition from subjective, uncomprehensive and qualitative description to objective, comprehensive and quantitative analysis. At the end of this review, we also put forward some prospects for LF development based on RE luminescent NMs, which should be further studied.
|
Received: 2023-11-08
Accepted: 2024-02-17
|
|
|
[1] Litter M I, Ahmad A. Industrial Applications of Nanoparticles: a Prospective Overview. Florida: CRC Press, 2023.
[2] Su B. Analytical and Bioanalytical Chemistry, 2016, 408(11): 2781.
[3] Menzel E R, Savoy S M, Ulvick S J, et al. Journal of Forensic Sciences, 2000, 45(3): 545.
[4] Menzel E R, Takatsu M, Murdock R H, et al. Journal of Forensic Sciences, 2000, 45(4): 770.
[5] LI Ming, NI Long, WANG Meng, et al(李 明, 倪 龙, 王 猛, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2021, 41(9): 2670.
[6] Xu L R, Zhang C Z, He Y Y, et al. SCIENCE CHINA-Chemistry, 2015, 58(7): 1090.
[7] WANG Meng, JU Jin-sheng, ZHU Zhong-xu, et al(王 猛, 鞠金晟, 朱中旭, 等). SCIENTIA SINICA: Chimica(中国科学: 化学), 2019, 49(12): 1425.
[8] Wang M, Li M, Yu A Y, et al. Advanced Functional Materials, 2017, 27(14): 1606243.
[9] Saif M. Journal of Luminescence, 2013, 135: 187.
[10] Wang M, Li M, Yu A Y, et al. ACS Applied Materials & Interfaces, 2015, 7(51): 28110.
[11] Park J Y, Yang H K. Dyes and Pigments, 2017, 141: 348.
[12] Park J Y, Park S J, Kwak M, et al. Journal of Luminescence, 2018, 201: 275.
[13] Park S J, Je B S, Jang J W, et al. Journal of Alloys and Compounds, 2019, 789: 367.
[14] Pavitra E, Raju G S R, Park J Y, et al. Ceramics International, 2020, 46(7): 9802.
[15] Luo J M, Wang Y, Chen S S, et al. Journal of Alloys and Compounds, 2021, 892: 162049.
[16] Ma Y Y, Liu R Y, Geng X, et al. Ceramics International, 2022, 48(3): 4080.
[17] Xie Y, Geng X, Guo J, et al. Materials Research Bulletin, 2022, 146: 111574.
[18] WANG Meng(王 猛). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2016, 36(5): 1412.
[19] Kumar K N, Vijayalakshmi L, Hwang P, et al. Journal of Alloys and Compounds, 2020, 840: 155589.
[20] Peng D, He S G, Zhang Y Y, et al. Journal of Materiomics, 2022, 8(1): 229.
[21] Yadav H J A, Eraiah B, Nagabhushana H, et al. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2061.
[22] Deepthi N H, Darshan G P, Basavaraj R B, et al. Sensors and Actuators, B: Chemical, 2018, 255: 3127.
[23] Yogananda H S, Basavaraj R B, Darshan G P, et al. Journal of Colloid and Interface Science, 2018, 528: 443.
[24] Babu K R V, Renuka C G, Basavaraj R B, et al. Journal of Rare Earths, 2019, 37(2): 134.
[25] Marappa B, Rudresha M S, Basavaraj R B, et al. Sensors and Actuators, B: Chemical, 2018, 264: 426.
[26] Venkatachalaiah K N, Nagabhushana H, Basavaraj R B, et al. Journal of Rare Earths, 2018, 36(9): 954.
[27] Ashwini S, Prashantha S C, Naik R, et al. Optik, 2019, 192: 162956.
[28] Rohini B S, Darshan G P, Premkumar H B, et al. Colloids and Surfaces A, 2019, 581: 123749.
[29] Narasimhamurthy K N, Darshan G P, Sharma S C, et al. Journal of Colloid and Interface Science, 2021, 600: 887.
[30] King A, Singh R, Anand R, et al. Optik, 2021, 242: 167087.
[31] WANG Meng, WANG Hai-ping(王 猛, 王海平). Journal of China Maritime Police Academy(公安海警学院学报), 2015, 14(1): 29.
[32] Suresh C, Nagabhushana H, Basavaraj R B, et al. Journal of Colloid Interface Science, 2018, 518: 200.
[33] Latha N, Vidya Y S, Sharma S C, et al. Journal of Solid State Chemistry, 2020, 290: 121418.
[34] Suresh C, Darshan G P, Sharma S C, et al. Optical Materials, 2020, 100: 109625.
[35] Suresh C, Vidya Y S, Nagabhushana H, et al. Journal of Science: Advanced Materials and Devices, 2021, 6(1): 75.
[36] Suresh C, Darshan G P, Premkumar H B, et al. Journal of Science: Advanced Materials and Devices, 2022, 7(1): 100397.
[37] Darshan G P, Premkumar H B, Nagabhushana H, et al. Dyes and Pigments, 2016, 131: 268.
[38] Darshan G P, Premkumar H B, Nagabhushana H, et al. Journal of Colloid and Interface Science, 2016, 464: 206.
[39] Darshan G P, Premkumar H B, Nagabhushana H, et al. Dyes and Pigments, 2016, 134: 227.
[40] Darshan G P, Premkumar H B, Nagabhushana H, et al. Journal of Alloys and Compounds, 2016, 686: 577.
[41] Komahal F F, Nagabhushana H, Basavaraj R B, et al. Advanced Powder Technology, 2018, 29(9): 1991.
[42] Shilpa C J, Basavaraj R B, Darshan G P, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 376: 288.
[43] Komahal F F, Nagabhushana H, Basavaraj R B, et al. Journal of Rare Earths, 2019, 37(7): 699.
[44] Darshan G P, Premkumar H B, Nagabhushana H, et al. Materials Science and Engineering C, 2019, 99: 282.
[45] Park J Y, Chung J W, Park J S, et al. Journal of Alloys and Compounds, 2020, 824: 153994.
[46] Ashwini K R, Premkumar H B, Darshan G P, et al. Inorganic Chemistry Communications, 2021, 134: 109028.
[47] Ashwini K R, Premkumar H B, Prasad B D, et al. Inorganic Chemistry Communications, 2021, 130: 108665.
[48] Li F, Liu S Q, Qi R Y, et al. Journal of Alloys and Compounds, 2017, 727: 919.
[49] Park J Y, Chung J W, Yang H K. Ceramics International, 2019, 45(9): 11591.
[50] Wang Y, Ke Y, Chen S S, et al. Journal of Colloid and Interface Science, 2021, 583: 89.
[51] Pushpendra, Suryawanshi I, Kalia R, et al. Journal of Rare Earths, 2022, 40(4): 572.
[52] Basavaraj R B, Nagabhushana H, Darshan G P, et al. Journal of Industrial and Engineering Chemistry, 2017, 51: 90.
[53] Basavaraj R B, Nagabhushana H, Darshan G P, et al. Dyes and Pigments, 2017, 147: 364.
[54] Naik R, Prashantha S C, Nagabhushana H. Optical Materials, 2017, 72: 295.
[55] Gowri M M, Darshan G P, Naik Y V, et al. Optical Materials, 2019, 96: 109282.
[56] Sun Z, Jia M, Lin F, et al. Journal of Luminescence, 2020, 222: 117098.
[57] Yang S H, Lee H Y, Tseng P C, et al. Journal of Luminescence, 2021, 231: 117787.
[58] Ghubish Z, Saif M, Hafez H, et al. Journal of Molecular Structure, 2020, 1207: 127840.
[59] Saif M, Shebl M, Nabeel A I, et al. Sensors and Actuators B: Chemical, 2015, 220: 162.
[60] Saif M, Alsayed N, Mbarek A, et al. Journal of Molecular Structure, 2016, 1125: 763.
[61] Dhanalakshmi M, Nagabhushana H, Darshan G P, et al. Journal of Science: Advanced Materials and Devices, 2017, 2(1): 22.
[62] Girish K M, Prashantha S C, Naik R, et al. Optical Materials, 2017, 73: 197.
[63] Sandhyarani A, Kokila M K, Darshan G P, et al. Chemical Engineering Journal, 2017, 327: 1135.
[64] Dhanalakshmi M, Nagabhushana H, Sharma S C, et al. Materials Research Bulletin, 2018, 102: 235.
[65] Dhanalakshmi M, Nagabhushana H, Darshan G P, et al. Materials Research Bulletin, 2018, 98: 250.
[66] Muniswamy D, Nagabhushana H, Basavaraj R B, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 5214.
[67] Park S J, Kim J Y, Yim J H, et al. Journal of Alloys and Compounds, 2018, 741: 246.
[68] Dhanalakshmi M, Basavaraj R B, Darshan G P, et al. Microchemical Journal, 2019, 145: 226.
[69] Yeshodamma S, Sunitha D V, Basavaraj R B, et al. Journal of Luminescence, 2019, 208: 371.
[70] Sandhyarani A, Kokila M K, Darshan G P, et al. Journal of Science: Advanced Materials and Devices, 2020, 5(4): 487.
[71] Gouiaa M, Bennour I, Haddada L R, et al. Physica B: Physics of Condensed Matter, 2020, 582: 412009.
[72] Trabelsi H, Akl M, Akl S H. Powder Technology, 2021, 384: 70.
[73] WANG Meng(王 猛). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2015, 35(6): 1601.
[74] Chen C, Yu Y, Li C G, et al. Small, 2017, 13(48): 1702305.
[75] Shao J Y, Yan J H, Li X G, et al. Dyes and Pigments, 2019, 160: 555.
[76] LI Ming(李 明). Chemical Research and Application(化学研究与应用), 2020, 32(7): 1207.
[77] LI Wei-lin, WANG Meng, ZHU Zhong-xu, et al(李维林, 王 猛, 朱中旭, 等). Chemical Research and Application(化学研究与应用), 2021, 33(3): 430.
[78] Kamal R, Saif M. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 229: 117928.
[79] Rajkumar G, Ponnusamy V, Kanmani G V, et al. Ceramics International, 2022, 48(1): 10.
[80] Navami D, Basavaraj R B, Sharma S C, et al. Journal of Alloys and Compounds, 2018, 762: 763.
[81] Navami D, Darshan G P, Lavanya D R, et al. Optical Materials, 2021, 122: 111474.
[82] Hauser F M, Knupp G, Officer S. Forensic Science International, 2015, 253: 55.
[83] Peng D, Wu X, Liu X, et al. ACS Applied Materials & Interfaces, 2018, 10(38): 32859.
[84] Peng D, Huang M, Xiao Y, et al. Chemical Communications, 2019, 55: 10579.
[85] ZHANG Zhan-sheng, GAO Yang-chen, SHEN Dun-pu, et al(张战胜, 高杨晨, 沈敦璞, 等). Imaging Science and Photochemistry(影像科学与光化学), 2018, 36(6): 498.
[86] XIE Yin-peng, SHEN Dun-pu, ZHANG Zhan-sheng, et al(谢垠蓬, 沈敦璞, 张战胜, 等). Chemical Research and Application(化学研究与应用), 2019, 31(3): 470.
[87] Prabakaran E, Pillay K. Journal of Saudi Chemical Society, 2020, 24(8): 584.
[88] Fouad R, Saif M. Journal of Molecular Structure, 2020, 1217: 128472.
[89] ZHU Zhong-xu, WANG Meng, LI Ming, et al(朱中旭, 王 猛, 李 明, 等). Chinese Journal of Analytical Chemistry(分析化学), 2021, 49(2): 237.
[90] XIN Cui, WANG Meng, WEI Juan, et al(辛 翠, 王 猛, 魏 涓, 等). Chemical Research and Application(化学研究与应用), 2022, 34(1): 119.
[91] MA Bo-wen, LI Jia-wei, WANG Meng, et al(马博文, 李嘉伟, 王 猛, 等). Chinese Journal of Inorganic Chemistry(无机化学学报), 2023, 39(9): 1673.
[92] Liu L, Zhang Z L, Zhang X M. Forensic Science International, 2009, 183(1-3): 45.
[93] Sharma V, Das A, Kumar V, et al. Journal of Materials Science,2014, 49(5): 2225.
[94] NI Long, WANG Meng, ZHU Zhong-xu, et al(倪 龙, 王 猛, 朱中旭, 等). Chinese Journal of Analytical Chemistry(分析化学), 2022, 50(1): 103.
[95] Ma R L, Bullock E, Maynard P, et al. Forensic Science International, 2011, 207(1-3): 145.
[96] Ma R L, Shimmon R, McDonagh A, et al. Forensic Science International, 2012, 217(1-3): e23.
[97] Xie H H, Wen Q, Huang H, et al. RSC Advances, 2015, 5(97): 79525.
[98] Zhang D P, Ding M Y, Dong B, et al. Ceramics International, 2019, 45(16): 20307.
[99] Som S, Yang C Y, Lu C H, et al. Ceramics International, 2019, 45(5): 5703.
[100] Bartkowiak A, Siejca A, Borkowski K, et al. Journal of Alloys and Compounds, 2019, 784: 641.
[101] Krishnan R, Nair G B, Menon S G, et al. Journal of Alloys and Compounds, 2021, 878: 160386.
[102] Wang J, Wei T, Li X Y, et al. Angewandte Chemie International Edition, 2014, 53(6): 1616.
[103] Du P, Zhang P, Kang S H, et al. Sensors and Actuators B: Chemical, 2017, 252: 584.
[104] Zhou D L, Li D Y, Zhou X Y, et al. ACS Applied Materials & Interfaces, 2017, 9(40): 35226.
[105] Wang L J, Gu W H, An Z B, et al. Sensors and Actuators B: Chemical, 2018, 266: 19.
[106] Wang M, Li M, Yang M Y, et al. Nano Research, 2015, 8(6): 1800.
[107] Wang M, Zhu Y, Mao C B. Langmuir, 2015, 31(25): 7084.
[108] Wang M, Shen D P, Zhu Z X, et al. Materials Today Advances, 2020, 8: 100113.
[109] Wang M. RSC Advances, 2016, 6(43): 36264.
[110] Li B Y, Zhang X L, Zhang L Y, et al. Dyes and Pigments, 2016, 134: 178.
[111] Kanodarwala F K, Lesniewski A, Olszowska-Los I, et al. Forensic Science International, 2021, 326: 110915.
[112] Li J C, Zhu X J, Xue M, et al. Inorganic Chemistry, 2016, 55(20): 10278.
[113] Shahi P K, Singh P, Singh A K, et al. Journal of Colloid and Interface Science, 2017, 491: 199.
[114] Wang J K, He N, Zhu Y L, et al. Chemical Communications, 2018, 54(6): 591.
[115] YU Ao-yang, YANG Rui-qin, WANG Meng(于遨洋, 杨瑞琴, 王 猛). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2018, 38(1): 144.
[116] Sodhi G S, Kaur J. Forensic Science International, 2001, 120(3): 172.
[117] Gao F, Han J X, Zhang J, et al. Nanotechnology, 2011, 22(7): 075705.
[118] Moret S, Becue A, Champod C. Nanotechnology, 2014, 25(42): 425502.
[119] Wang J, Ma Q Q, Liu H Y, et al. Analytical Chemistry, 2017, 89(23): 12764.
[120] Wu P, Xu C Y, Hou X D, et al. Chemical Science, 2015, 6(8): 4445.
[121] Peng T H, Qin W W, Wang K, et al. Analytical Chemistry, 2015, 87(18): 9403.
[122] Wood M, Maynard P, Spindler X, et al. Angewandte Chemie-International Edition, 2012, 51(49): 12272.
[123] Li K, Qin W W, Li F, et al. Angewandte Chemie-International Edition, 2013, 52(44): 11542.
|
[1] |
WANG Rui1, ZHENG Lu-ying1, HU Bo1, ZHANG Xin-yu2, ZHAO Si-si1*, ZHANG Hang1*. Application of Fluorescent Probe Tetraphenyl-1,3-Butadiene in the Detection of Antibiotics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(05): 1321-1329. |
[2] |
CHEN An-min1, 2, 3, MA Fei-yun2, CUI Ling-jiang2, ZHANG Peng1, 2, WANG Chuan-jie1, 2*. Near-Infrared Emission and Energy Transfer Mechanism of
Er3+/Nd3+/Tm3+ Co-Doped Tellurite Glasses[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 1171-1176. |
[3] |
WANG Chong1, REN Zhong-xuan1, 2, LI Dong-dong1, SHE Jiang-bo2. Enhanced Up-Conversion Emission of NaGdF4:Yb3+/Eu3+Crystal via Li+ Doping for Anti-Counterfeiting Application[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(02): 497-503. |
[4] |
GU Yi-lu1, 2,PEI Jing-cheng1, 2*,ZHANG Yu-hui1, 2,YIN Xi-yan1, 2,YU Min-da1, 2, LAI Xiao-jing1, 2. Gemological and Spectral Characterization of Yellowish Green Apatite From Mexico[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 181-187. |
[5] |
ZHOU Bei-bei1, LI Heng-kai1*, LONG Bei-ping2. Variation Analysis of Spectral Characteristics of Reclaimed Vegetation in an Ionic Rare Earth Mining Area[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3946-3954. |
[6] |
LAI Niu, HUANG Qi-qiang, ZHANG Qin-yang, ZHANG Bo-wen, WANG Juan, YANG Jie, WANG Chong, YANG Yu, WANG Rong-fei*. Introduction to Perovskite Quantum Dots and Metal-Organic Frameworks and the Development of Composites[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3321-3329. |
[7] |
DING Han. Background-Free Development of Latent Fingerprints on Fluorescent
Substrates[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3427-3435. |
[8] |
QIN Li-mei, Andy Hsitien Shen*. Photoluminescence Spectral Characteristics of Jet From Fushun, Liaoning Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3180-3185. |
[9] |
ZHANG Hao-yu1, FU Biao1*, WANG Jiao1, MA Xiao-ling2, LUO Guang-qian1, YAO Hong1. Determination of Trace Rare Earth Elements in Coal Ash by Inductively Coupled Plasma Tandem Mass Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2074-2081. |
[10] |
ZHU Hong-wei1, CHENG You-fa1, CHEN Shu-xiang2*, FAN Chun-li1, LI Ting1, LIU Hai-bin1, ZHAO Xiao-xue1SHAN Guang-qi1, LI Jian-jun1. Spectroscopic Characteristics of a Natural Diamond Suspected of Synthetic Diamond[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1690-1696. |
[11] |
YAN Xue-jun1, ZHOU Yang2, HU Dan-jing1, YU Dan-yan1, YU Si-yi1, YAN Jun1*. Application of UV-VIS Diffuse Reflectance Spectrum, Raman and
Photoluminescence Spectrum Technology in Nondestructive
Testing of Yellow Pearl[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1703-1710. |
[12] |
CHEN Di, SONG Chen, SONG Shan-shan, ZHANG Zhi-jie*, ZHANG Hai-yan. The Dating of 9 Batches of Authentic Os Draconis and the Correlation
Between the Age Range and the Ingredients[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1900-1904. |
[13] |
HAN Zhao-xia1, 2, 3*, YANG Zhi-jin1, ZHANG Zhi-hong1, DING Shu-hui1, ZHANG Da-wei1, 2, 3, HONG Rui-jin1, 2, 3, TAO Chun-xian1, 2, 3, LIN Hui1, 2, 3, YU De-chao1, 2, 3. Preparation of Full-Color Carbon Quantum Dots and Their Application in WLED[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1358-1366. |
[14] |
LI Zhao, WANG Ya-nan, XU Yi-pu, CAO Jing, WANG Yong-feng, WU Kun-yao, DENG Lu. Synthesis and Photoluminescence of Blue-Emitting Phosphor
YVO4∶Tm3+ for White Light Emitting Diodes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 623-628. |
[15] |
ZHAI Yan-ke1, PAN Yi-xing1, XIANG Hao1, XU Li1*, ZHU Ze-ce2, LEI Mi1. Coordination Interaction of DSAZn With Quercetin and High Sensitivity Detection of Quercetin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 122-128. |
|
|
|
|