|
|
|
|
|
|
Preparation Mechanism of Decylic Acid-Palmitic Acid/SiO2@TiO2
Photocatalytic Phase Change Microcapsules Based on
Multiple Spectrum Analysis |
ZONG Zhi-fang1, XU Wei-cheng2, CHEN De-peng1*, TANG Gang1, ZHOU Xiao-hui1, DONG Wei1, WU Yu-xi2 |
1. School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243032, China
2. Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Ministry of Education (Anhui University of Technology), Ma’anshan 243002, China
|
|
|
Abstract Building energy consumption occupies more than 30% of total energy consumption in China. Building energy conservation is an important part of China’s policy on energy conservation and emissions reduction. It is important to realize building energy conservation by improving its thermal and humidity regulation performance through the passive regulation performance of the building itself. Decylic acid and palmitic acid were used to prepare decylic acid-palmitic acid composite phase change material, which phase changes temperature within the comfort range of the human body. The decylic acid-palmitic acid composite phase change material, tetraethyl silicate and tetrabutyl titanate were used as raw materials to prepare decylic acid-palmitic acid /SiO2@TiO2 photocatalytic phase change microcapsules (D-T microcapsules) which have heat, humidity adjustment and air purification function. It is conducive to building energy saving and improving indoor air quality. In this study, the dosage of deionized water (the molar ratio of deionized water to tetraethyl silicate), pH value, the dosage of clecylic acid-palmitic acid composite phase change material (the molar ratio of decylic acid-palmitic acid composite phase change material to tetraethyl silicate), the dosage of tetrabutyl titanate (molar ratio of tetrabutyl titanate to tetraethyl silicate) and the dropping acceleration of tetrabutyl titanate, these five effects were analyzed to study the effects on the particle size, composition, morphology, air purification function, thermal and humidity regulation performance of D-T microcapsules. The laser particle size analysis results showed that the amount of deionized water and tetrabutyl titanate had important effects on the particle size distribution of D-T microcapsules. The excess water system can effectively disperse T-D microcapsules and prevent agglomeration. TiO2 generated by the hydrolysis of tetrabutyl titanate was wrapped on the surface of decylic acid-palmitic acid@SiO2. Thus the dosage of tetrabutyl titanate affected the particle size of D-T microcapsules. Scanning electron microscopy showed that excessive decylic acid-palmitic acid composite phase change material would cause leakage of phase change material. The rapid drop acceleration of tetrabutyl titanate affected the hydrolysis reaction rate and would led to TiO2 agglomeration. XRD analysis showed that pH value was the key factor for preparing anatase phase TiO2 with photocatalytic performance. Therefore, when the dosage of deionized water is 90∶1, the pH value is 2, the dosage of decylic acid-palmitic acid composite phase change material is 0.5, the dosage of tetrabutyl titanate is 0.8, and the dropping acceleration of tetrabutyl titanate is 20 min, the prepared D-T microcapsules have complete morphology, uniform particle size and anatase structure. After 6 hours of the formaldehyde degradation test, the degradation rate of formaldehyde can reach 67.87 %. There is an obvious phase transition temperature platform between 18~23 ℃, with a duration of 300 s. When the relative humidity is 84.34%, the equilibrium moisture content is 0.181 9 g·g-1, and the moisture capacity between 32.78%~84.34% is 0.161 3 g·g-1.
|
Received: 2022-02-15
Accepted: 2022-06-14
|
|
Corresponding Authors:
CHEN De-peng
E-mail: dpchen@ahut.edu.cn
|
|
[1] Tang S Y, Zhi C Q, Fan Y J, et al. Building and Environment, 2020, 177: 106839.
[2] Psomas T, Teli D, Langer S, et al. Building and Environment, 2021, 198: 107885.
[3] Yuan K J, Zhou Y, Sun W C, et al. Composites Science and Technology, 2018, 156: 78.
[4] Gnanachelvam S, Ariyanayagam A, Mahendran M, et al. Fire Safety Journal, 2019, 108: 102838.
[5] Peng G J, Dou G J, Hu Y H, et al. Advances in Polymer Technology, 2020, 2020: 9490873.
[6] Zhang H, Fang Y. Journal of Alloys and Compounds,2019, 781: 201.
[7] Zong Z F, Chen D P, Zhao C X, et al. Asia-Pacific Journal of Chemical Engineering, 2020, 16(1): e2575.
[8] Zong Z F, Chen D P, Zhao C X, et al. Environmental Science and Pollution Research, 2021, 28(26): 34762.
[9] Zhang H. Ceramics International,2020, 46(7): 9972
[10] Mahfooz-ur R, Wajid R, Muhammad W, et al. Environment Science and Pollution Research, 2019, 26: 19968.
[11] Zhang H, Li Z H. Open Medicine,2019, 14: 673.
[12] Zhao S Y, Li J H, Wu Y F, et al. Renewable Energy, 2021, 178: 701.
[13] Yu S G, Zhang H Y, Zhang J. Ceramics International, 2021, 47(21): 30880.
|
[1] |
QI Dong-li, CHENG Jia, SUN Hui, ZHANG Rui-xin, SONG Jian-yu, QIN Yan-li, LI Hong-da, SHEN Long-hai*. Research on Spectral Characteristics and Photocatalytic Properties of Ball Milled TiO2[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3063-3067. |
[2] |
ZHANG Li-sheng. Photocatalytic Properties Based on Graphene Substrate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1058-1063. |
[3] |
LIU Guo-hua, LI Qi-hua*, OU Jin-ping, XU Heng, ZHU Peng-cheng, LIU Hao-ran. Passive Spectrum Measurement of HCHO in Chongqing Area Based on MAX-DOAS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 243-247. |
[4] |
HE Qi-xin, LI Jia-kun, FENG Qi-bo*. Development of a Mid-Infrared Cavity Enhanced Formaldehyde Detection System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2077-2081. |
[5] |
YANG Chuan-xiao, GONG Wei-bin, TANG Fan, SUN Xiang-ying. Determination of Sodium Hexametaphosphate by Ratiometric Fluorescence Method Based on Formaldehyde Functionalized Polyethyleneimine/Eosin Y System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 454-459. |
[6] |
JI Bang1,2, ZHAO Wen-feng3, DUAN Jie-li4, FU Lan-hui1, MA Li-zhe3, YANG Zhou1*. Spectral Characteristics of Ag3PO4/GO on Nickel Foam and Photocatalytic Degradation of Ethylene Under Visible Light[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(09): 2743-2750. |
[7] |
CHEN Min-nan, TAO Hong*, SONG Xiao-feng, WANG Yi-xin, SHAO Ling, HAN Xiao, LIU Wei, YIN Guang-yi, XIE Xin-yu, YAN Nan-xia. Spectroscopic Analysis of Nitric Acid-Assisted Synthesis of Nitrogen-Defected Graphite Carbon Nitride Materials[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(07): 2159-2163. |
[8] |
ZHANG Hao1,2, GAO Qing1, HAN Xiang-xiang1, RUAN Gao-yang1, LIU Xiu-yu1. Mechanism Analysis of Formaldehyde Degradation by Hot Braised Slag Modified Activated Carbon Based on XRF and XRD[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(05): 1447-1451. |
[9] |
ZHANG Hao1, 2, 3, ZHANG Lei3, LONG Hong-ming1, 2*. Spectroscopic Analysis of Preparation of Ecological Activated Carbon Based on Electric Furnace Slag Ultrafine Powder Modified Biomass Waste Material[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(03): 861-866. |
[10] |
MA Li-zhe1, JI Bang2, YANG Zhou2*, HUANG Quan-feng1, ZHAO Wen-feng1*. Study of Photocatalytic Degradation of Antibiotics Based on UV-LED Array[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(09): 2894-2900. |
[11] |
WEI Min-hong1,2, LIU Cheng2*, LI Su-wen1, CHEN Zheng-hui1, MOU Fu-sheng1. Measurement of Tropospheric HCHO by MAX-DOAS Based on QDOAS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(08): 2332-2336. |
[12] |
YE Ping, WU Miao-miao, WEI Ming, YANG Zhen, HAN Qiao-feng*. Preparation, Characterization and Properties of BiOCl1-xIx and BiOBr1-xIx Solid Solution[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(08): 2443-2449. |
[13] |
WANG Lin-na, CHENG Ya-wen, LIU Ke, ZHANG Xiu-ling*. The Stability of Ionic Liquids in DBD Plasma under Atmospheric Pressure[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(05): 1372-1376. |
[14] |
CAO Si-min, LIU Yang-yi, ZHOU Zhong-neng, CHEN Jin-quan, XU Jian-hua*. Study on Spectral Characteristics of a Novel Formaldehyde Probe Based on Fluoral-P Derivatives[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(03): 828-833. |
[15] |
LIU Jun-shao1, HUANG Lei2, XIE Wen-ju1, LIN Hao1, CHEN Yi-ping2, PAN Hai-bo2*. Preparation of Four Phenoxy Phthalocyanine Zinc/ZnO Composites with in-situ Method by DBU Liquid Phase Catalyst and Its Photocatalytic Selectivity[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1486-1491. |
|
|
|
|