|
|
|
|
|
|
Study on Spectral Characteristics of a Novel Formaldehyde Probe Based on Fluoral-P Derivatives |
CAO Si-min, LIU Yang-yi, ZHOU Zhong-neng, CHEN Jin-quan, XU Jian-hua* |
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China |
|
|
Abstract Formaldehyde (HCHO) is one of the main pollutants of indoor air. Exposure to excessive formaldehyde for a long time will cause serious damage to human eyes, skin and respiratory organs, and even lead to loss of the function of nervous system[1], as well as ear, nose and laryngeal cancer[2]. Therefore, a rapid, efficient and accurate detection of gaseous formaldehyde is of great significance to human health. So far, there have been a lot of techniques that can be used for the detection of gaseous formaldehyde, such as gas chromatography (GC)[3] and high-performance liquid chromatography (HPLC)[4]. Although chromatographic apparatus may provide detection limits of several μg·m-3, they are time-consuming and not suitable for real-time and continuous monitoring of formaldehyde concentration because of their weight and bulk. Semiconductor gas sensors based on gas-sensitive films provide a good alternative in indoor formaldehyde monitoring due to their advantages of high stability, short response time and continuous monitoring. However, high detection limit (>300 μg·m-3) and poor selectivity is considered to be a great limitation for such sensors[5]. Enzyme-based biosensors usually have a good sensitivity and selectivity, but their thermal stability is usually poor, which seriously restricts their application[6]. Colorimetric and fluorescence methods are widely applied in the design of formaldehyde gas sensors because of their fast response, high sensitivity, low detection limit, good selectivity, simplicity and low cost[7-9]. These methods are based on the combination of probes and formaldehyde which can generate new substances, resulting in the change of absorption spectrum or fluorescence enhancement, so that ones may achieve quantitative detection of formaldehyde. Descamps et al developed a portable formaldehyde detector by using 4-amino-3-penten-2-one (Fluoral-P) as a probe. Fluoral-P[10] is a reagent with enaminone structure which can selectively react with formaldehyde to form cyclic compound 3,5-diacetyl-1,4-dihydrolutidine (DDL). Since the absorption band of Fluoral-P is far apart from the absorption band of DDL, and a fluorescence peak with large Stokes shift can be produced after combined with formaldehyde, it is widely applied for the detection of formaldehyde. However, Fluoral-P is extremely unstable and easy to hydrolyze to form acetylacetone and ammonia under the presence of water, which severely limits its application in formaldehyde detection[10].In this work, we have studied the optical and chemical properties of the interaction between 4-amino-1,1,1-trifluorobut-3-en-2-one(3F-FP), a derivative of Fluoral-P, and formaldehyde solution by UV-vis absorption steady state fluorescence spectroscopy and gas chromatography-mass spectrometry(GC-MS). We found that the hydrolysis rate of Fluoral-P is k=1.555 9×10-5 L·mol-2·s-1, however, 3F-FP has very low hydrolysis rate(close to 0) and shows excellent stability in water environment. Meanwhile, 3F-FP can react with formaldehyde to form cyclic compound 6F-DDL, and a new absorption band appears at 430 nm and the fluorescence peak intensity at 489 nm also gets a significant enhancement and the enhancement factor is 12. The fluorescence growth rate is k=7.881×103 h-1. In the following work, we will use porous glass as the carrier for 3F-FP[11], by which the concentration of 3F-FP and contact surface area between the 3F-FP probe molecule and formaldehyde can be increased, leading to further increase of the fluorescence growth rate. In conclusion, 3F-FP has shown good application prospects in the field of gaseous formaldehyde detection.
|
Received: 2018-02-05
Accepted: 2018-06-10
|
|
Corresponding Authors:
XU Jian-hua
E-mail: jhxu@phy.ecnu.edu.cn
|
|
[1] Chung P R,Tzeng C T, Ke M T, et al. Sensors, 2013, 13(4): 4468.
[2] Salthammer T, Mentese S, Marutzky R. Chemical Reviews, 2010, 110(4): 2536.
[3] Hopkins J, Still T, Al-Haider S, et al. Atmospheric Environment, 2003, 37(18): 2557.
[4] Levin J O, Andersson K, Lindahl R, et al. Analytical Chemistry, 1985, 57(6): 1032.
[5] Lv P, Tang Z A, Yu J, et al. Sensors and Actuators B Chemical, 2008, 132(1): 74.
[6] Ma Q, Cui H, Su X. Biosensors and Bioelectronics, 2009, 25(4): 839.
[7] Suzuki Y, Nakano N, Suzuki K. Environmental Science and Technology, 2003, 37(24): 5695.
[8] Pinheivo H L, de Andrde M V, de Paula Pereira P A, et al. Microchemical Journal, 2004, 78(1): 15.
[9] Allouch A, Guglielmino M, Bernhardt P, et al. Sensors and Actuators B Chemical, 2013, 181(3): 551.
[10] Descamps M, Bordy T, Hue J, et al. Sensors and Actuators B: Chemical, 2012, 170: 104.
[11] Compton B J, Purdy W C. Analytica Chimica Acta, 1980, 119(2): 349.
[12] Vignau-Laulhere J, Mocho P, Plaisance H, et al. Analytical and Bioanalytical Chemistry, 2017, 409(26): 6245.
[13] Paolacci H, Porterat D, Tran-Thi T H. Sensors and Transducers Journal, 2007.
[14] Li Y, Liu Y, Zhou M. Dalton Trans, 2012, 41(13): 3807.
[15] Buback M, Tost W, Huebsch T, et al. Cheminform, 1989, 20(36): 1179.
[16] Dagnelie R, Crassous A, Tran T H. Journal of Membrane Science, 2010, 365(1): 98.
[17] Hammond G S, Borduin W G, Guter G A. Journal of the American Chemical Society, 2002, 81(17):1834. |
[1] |
LEI Hong-jun1, YANG Guang1, PAN Hong-wei1*, WANG Yi-fei1, YI Jun2, WANG Ke-ke2, WANG Guo-hao2, TONG Wen-bin1, SHI Li-li1. Influence of Hydrochemical Ions on Three-Dimensional Fluorescence
Spectrum of Dissolved Organic Matter in the Water Environment
and the Proposed Classification Pretreatment Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 134-140. |
[2] |
GU Yi-lu1, 2,PEI Jing-cheng1, 2*,ZHANG Yu-hui1, 2,YIN Xi-yan1, 2,YU Min-da1, 2, LAI Xiao-jing1, 2. Gemological and Spectral Characterization of Yellowish Green Apatite From Mexico[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 181-187. |
[3] |
HAN Xue1, 2, LIU Hai1, 2, LIU Jia-wei3, WU Ming-kai1, 2*. Rapid Identification of Inorganic Elements in Understory Soils in
Different Regions of Guizhou Province by X-Ray
Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 225-229. |
[4] |
WANG Hong-jian1, YU Hai-ye1, GAO Shan-yun1, LI Jin-quan1, LIU Guo-hong1, YU Yue1, LI Xiao-kai1, ZHANG Lei1, ZHANG Xin1, LU Ri-feng2, SUI Yuan-yuan1*. A Model for Predicting Early Spot Disease of Maize Based on Fluorescence Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3710-3718. |
[5] |
CHENG Hui-zhu1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, MA Qian1, 2, ZHAO Yan-chun1, 2. Genetic Algorithm Optimized BP Neural Network for Quantitative
Analysis of Soil Heavy Metals in XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3742-3746. |
[6] |
SONG Yi-ming1, 2, SHEN Jian1, 2, LIU Chuan-yang1, 2, XIONG Qiu-ran1, 2, CHENG Cheng1, 2, CHAI Yi-di2, WANG Shi-feng2,WU Jing1, 2*. Fluorescence Quantum Yield and Fluorescence Lifetime of Indole, 3-Methylindole and L-Tryptophan[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3758-3762. |
[7] |
YANG Ke-li1, 2, PENG Jiao-yu1, 2, DONG Ya-ping1, 2*, LIU Xin1, 2, LI Wu1, 3, LIU Hai-ning1, 3. Spectroscopic Characterization of Dissolved Organic Matter Isolated From Solar Pond[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3775-3780. |
[8] |
LI Xiao-li1, WANG Yi-min2*, DENG Sai-wen2, WANG Yi-ya2, LI Song2, BAI Jin-feng1. Application of X-Ray Fluorescence Spectrometry in Geological and
Mineral Analysis for 60 Years[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 2989-2998. |
[9] |
XUE Fang-jia, YU Jie*, YIN Hang, XIA Qi-yu, SHI Jie-gen, HOU Di-bo, HUANG Ping-jie, ZHANG Guang-xin. A Time Series Double Threshold Method for Pollution Events Detection in Drinking Water Using Three-Dimensional Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3081-3088. |
[10] |
MA Qian1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, CHENG Hui-zhu1, 2, ZHAO Yan-chun1, 2. Research on Classification of Heavy Metal Pb in Honeysuckle Based on XRF and Transfer Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2729-2733. |
[11] |
JIA Yu-ge1, YANG Ming-xing1, 2*, YOU Bo-ya1, YU Ke-ye1. Gemological and Spectroscopic Identification Characteristics of Frozen Jelly-Filled Turquoise and Its Raw Material[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2974-2982. |
[12] |
YANG Xin1, 2, XIA Min1, 2, YE Yin1, 2*, WANG Jing1, 2. Spatiotemporal Distribution Characteristics of Dissolved Organic Matter Spectrum in the Agricultural Watershed of Dianbu River[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2983-2988. |
[13] |
CHEN Wen-jing, XU Nuo, JIAO Zhao-hang, YOU Jia-hua, WANG He, QI Dong-li, FENG Yu*. Study on the Diagnosis of Breast Cancer by Fluorescence Spectrometry Based on Machine Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2407-2412. |
[14] |
ZHU Yan-ping1, CUI Chuan-jin1*, CHENG Peng-fei1, 2, PAN Jin-yan1, SU Hao1, 2, ZHANG Yi1. Measurement of Oil Pollutants by Three-Dimensional Fluorescence
Spectroscopy Combined With BP Neural Network and SWATLD[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2467-2475. |
[15] |
LIU Xian-yu1, YANG Jiu-chang1, 2, TU Cai1, XU Ya-fen1, XU Chang3, CHEN Quan-li2*. Study on Spectral Characteristics of Scheelite From Xuebaoding, Pingwu County, Sichuan Province, China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2550-2556. |
|
|
|
|