|
|
|
|
|
|
Measurement of Tropospheric HCHO by MAX-DOAS Based on QDOAS |
WEI Min-hong1,2, LIU Cheng2*, LI Su-wen1, CHEN Zheng-hui1, MOU Fu-sheng1 |
1. School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
2. School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Because of the importance of formaldehyde in atmospheric photochemical reaction and its harm to environment, climate and human health, it is urgent to control and monitor the concentration of formaldehyde. At present, traditional monitoring is mostly limited to indoor monitoring based on chemical methods and chromatographic methods or outdoor monitoring in a small range, while outdoor formaldehyde monitoring in a wide range of atmosphere is often ignored by people. In order to effectively monitor the concentration of formaldehyde (HCHO) in the atmosphere, the ground-based MAX - DOAS observation system was established. Compared with the active DOAS, the MAX - DOAS observation system was not limited by the light source and reflex attachment, with simple platform construction, wide measurement range. Based on this, continuous observation experiments were carried out based on MAX - DOAS observation system in the summer of 2018 at Hefei site, combined with the new generation of spectral processing software QDOAS, the nonlinear least squares fitting of DOAS algorithm was used to retrieve the differential slant column densities of formaldehyde (HCHO). Then the differential slant column densities of formaldehyde were converted to the vertical column densities by use of the atmospheric quality factor (AMF), and the observed data in July were analyzed, the result showed that the slant column densities of formaldehyde under low elevation angle are higher, therefore, tropospheric formaldehyde is mainly concentrated in the position near the earth’s surface. It can also be seen from the experimental data that the change trend of nitrogen dioxide and formaldehyde is basically consistent, indicating that the atmospheric formaldehyde is correlated with the nitrogen oxides (NO2, etc.) discharged by motor vehicles or industry in the process of atmospheric source and sink. It was found that the change trend of the two kinds of measurement data had a good consistency by the comparison between the ground-based MAX - DOAS measurement data and the OMI observation data, and the correlation coefficient was 0.518 9, and the reason why the OMI observation value was low was analyzed. The results showed that the ground-based MAX - DOAS system can not only study the evolution of regional pollution, but also provide a real-time and rapid monitoring method for formaldehyde measurement, a new analytical method for analyzing the source of atmospheric formaldehyde, and an effective method for verifying satellite observation data.
|
Received: 2019-01-11
Accepted: 2019-05-08
|
|
Corresponding Authors:
LIU Cheng
E-mail: chliu81@ustc.edu.cn
|
|
[1] Lee H, Ryu J, Irie H. Atmosphere. 2015, 6:1816.
[2] Jin J, Ma J, Lin W. Atmospheric Environment,2016, 133:12.
[3] SHEN Shi-liang, WANG Shan-shan, ZHOU Bin(沈仕亮,王珊珊,周 斌). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2016, 36(8): 2384.
[4] Tian X, Xie P, Xu J , et al. Journal of Environmental Sciences, 2018, 71:207.
[5] Hong Q, Chan K L, Hu Q, et al. Atmos. Chem. Phys.,2018, 18, 5931.
[6] XU Jin, XIE Pin-hua, SI Fu-qi, et al(徐 晋,谢品华,司福祺,等). Acta Physica Sinica(物理学报), 2013, 62(10): 104214-1.
[7] Platt U, Stutz J. Differential Absorption Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2008.
[8] Liu H, Liu, C, Xie Z, et al. Sci. Rep.,2016, 6:34408.
[9] Khokhar M, Naveed S, Butt J. Atmosphere, 2016, 7:68.
[10] Xing C, Liu C, Wang S , et al. Atmos. Chem. Phys.,2017, 17:14275. |
[1] |
CHANG Zhen1, ZHONG Ming-yu2*, SU Jing-ming1, 2, SI Fu-qi1, WANG Yu3, ZHOU Hai-jin1, DOU Ke1, ZHANG Quan1. Study on the Reconstructing the NO2 Gas Distribution in a Vertical Plane Using MAX-DOAS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2413-2418. |
[2] |
PU Gui-juan1, 2, CHENG Si-yang3*, LI Song-kui4, LÜ Jin-guang2, CHEN Hua5, MA Jian-zhong3. Spectral Inversion and Variation Characteristics of Tropospheric NO2
Column Density in Lhasa, Tibet[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1725-1730. |
[3] |
ZONG Zhi-fang1, XU Wei-cheng2, CHEN De-peng1*, TANG Gang1, ZHOU Xiao-hui1, DONG Wei1, WU Yu-xi2. Preparation Mechanism of Decylic Acid-Palmitic Acid/SiO2@TiO2
Photocatalytic Phase Change Microcapsules Based on
Multiple Spectrum Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1306-1313. |
[4] |
REN Hong-mei1, 2, LI Ang1*, HU Zhao-kun1, XIE Pin-hua1, 2, 3, XU Jin1, HUANG Ye-yuan1, 2, LI Xiao-mei1, 2, ZHONG Hong-yan1, 4, ZHANG Hai-rong1, 2, TIAN Xin1, 4, REN Bo2, ZHENG Jiang-yi1, 2, WANG Shuai5, CHAI Wen-xuan5. Measurement of Water Vapor Absorption in the Ultraviolet Band Using MAX-DOAS and Evaluation of Its Influence on DOAS Retrieval[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3314-3320. |
[5] |
XU Heng1, LIU Hao-ran1*, JI Xiang-guang2, LI Qi-hua1, LIU Guo-hua1, OU Jin-ping1, ZHU Peng-cheng1. Study on the Tropospheric Column Density of NO2 in Shanghai Based on MAX-DOAS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2720-2725. |
[6] |
TIAN Xin1, 3, REN Bo3, 5, XIE Pin-hua1, 3, 4, 5, MOU Fu-sheng2*, XU Jin3, LI Ang3, LI Su-wen2, ZHENG Jiang-yi3LI Xiao-mei3, REN Hong-mei3, HUANG Xiao-hui1, PAN Yi-feng1, TIAN Wei1. Study on Vertical Distribution of Atmospheric HONO in Winter Based on Multi-Axis Differential Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2039-2046. |
[7] |
LIU Guo-hua, LI Qi-hua*, OU Jin-ping, XU Heng, ZHU Peng-cheng, LIU Hao-ran. Passive Spectrum Measurement of HCHO in Chongqing Area Based on MAX-DOAS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 243-247. |
[8] |
ZHU Peng-cheng1, LIU Hao-ran1*, JI Xiang-guang2, LI Qi-hua1, LIU Guo-hua1, TIAN Yuan1, XU Heng1. Study on Measurement of Troposphereic NO2 in Beijing by MAX-DOAS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2153-2158. |
[9] |
HE Qi-xin, LI Jia-kun, FENG Qi-bo*. Development of a Mid-Infrared Cavity Enhanced Formaldehyde Detection System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2077-2081. |
[10] |
YANG Chuan-xiao, GONG Wei-bin, TANG Fan, SUN Xiang-ying. Determination of Sodium Hexametaphosphate by Ratiometric Fluorescence Method Based on Formaldehyde Functionalized Polyethyleneimine/Eosin Y System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 454-459. |
[11] |
LIU Hao-ran1, HU Qi-hou2*, TAN Wei2, SU Wen-jing3, CHEN Yu-jia2, ZHU Yi-zhi2, LIU Jian-guo2. Study of the Urban NO2 Distribution and Emission Assessment Based on Mobile MAX-DOAS Observations[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(01): 11-19. |
[12] |
ZHANG Hao1,2, GAO Qing1, HAN Xiang-xiang1, RUAN Gao-yang1, LIU Xiu-yu1. Mechanism Analysis of Formaldehyde Degradation by Hot Braised Slag Modified Activated Carbon Based on XRF and XRD[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(05): 1447-1451. |
[13] |
ZHANG Hao1, 2, 3, ZHANG Lei3, LONG Hong-ming1, 2*. Spectroscopic Analysis of Preparation of Ecological Activated Carbon Based on Electric Furnace Slag Ultrafine Powder Modified Biomass Waste Material[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(03): 861-866. |
[14] |
LI Xiao-mei1, 2, XIE Pin-hua1, 2, 3*, XU Jin1, LI Ang1, TIAN Xin2, REN Bo2, HU Zhao-kun1, 2, WU Zi-yang2. Aerosol Observation and Research in Hefei by MAX-DOAS Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(03): 712-719. |
[15] |
YANG Lei, LIN Bin-bin, ZHENG Qi-wei, WU Shu-lan, ZHENG Bing-yun, ZHU Zhi-fei, HU Wen-ying. Its Photochemical Recognition to Hg2+ and Preparation of Nitrogen and Sulfur-Codoped Carbon Dots by Sulfanilamide[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(11): 3388-3394. |
|
|
|
|