|
|
|
|
|
|
Application Progress of Non-Destructive Spectroscopy on Conversation of Cultural Relics |
CHEN Dong-mei1, 2, MA Liang-liang2, ZHANG Xian-ming1, 3* |
1. School of Chemistry and Material Science, Institute of Chemistry and Culture, Shanxi Normal University, Taiyuan 030006, China
2. School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741001, China
3. College of Chemistry, Taiyuan University of Technology, Taiyuan 030024, China
|
|
|
Abstract Non-destructive spectral technologies are important methods of information extraction of cultural relics, which can obtain the relevant historical and artistic information on cultural relics in situ, identify the conservation and damage status of cultural relics, and traces the previous restoration. These technologies provide a scientific basis for the assessment of cultural relic conservation conditions, the discussion of disease mechanisms, the research of load information, and the exploration of production materials and craftsmanship. The application of X-ray fluorescence spectroscopy (XRF), laser-induced breakdown spectroscopy (LIBS), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy (RS), infrared spectroscopy (IR), diffuse reflectance spectroscopy (DRS), multispectral (MSI) and hyperspectral imaging (HSI) techniques for non-destructive analysis of cultural relics were presented. Because of the different types, sizes and preservation status of cultural relics, portable and fixed instruments have their characteristics in the non-destructive analysis. Portable and micro-XRF can perform qualitative and quantitative analysis of cultural relics, and Macro-XRF can analyze multi-layer structures and obtain elemental distribution and hidden information of imaging patterns. LIBS can detect low atomic number elements such as lithium and carbon that cannot be detected by XRF and conduct depth and profile analysis of cultural relics. XPS can get the chemical state and elements’ content on the sample’s surface. RS can identify the phase composition of cultural relics, confirm the composition and deterioration of cultural relics, and evaluate the protective effect. Resonance Raman spectroscopy is sensitive to aromatic compounds with RS activity and can analyze organic dyes on textiles and paper. Surface-enhanced Raman spectroscopy can identify spectral peaks that conventional RS cannot identify. In infrared spectroscopy, the application of near-infrared spectroscopy has been expanded from organic to inorganic cultural relics. IR reflection spectroscopy can compensate for the deficiency of IR absorption spectroscopy, and it has been used in the research of color painting craftsmanship, surface deterioration layer of cultural relics, and analyzing the multi-layer structure of paint layer. DRS has unique advantages in pigments and dye analysis. MSI and HSI have the characteristics of the integration of spectrum and image, which can perform qualitative, quantitative and localization analysis on the study area. They have been used in the restoration, extracting hidden information and identifying cultural relics. Each spectrum has its characteristic and limit in the test function of cultural relics. In order to obtain comprehensive information heritage as nondestructively as possible, elemental and phase structure analysis, compositional analysis and imaging technology are often used together, combined with metrology and algorithm analysis, to improve the detection results and expand the application scope of non-destructive technology. Finally, the development prospect of non-destructive spectroscopy technology has prospected.
|
Received: 2021-12-08
Accepted: 2022-04-22
|
|
Corresponding Authors:
ZHANG Xian-ming
E-mail: zhangxm@dns.sxnu.edu.cn
|
|
[1] ZHANG Yun, WEN Rui, CUI Meng-he, et al(张 鋆,温 睿,崔梦鹤,等). Journal of Northwest University·Natural Science Edition(西北大学学报·自然科学版), 2016, 46(6): 932.
[2] Ortega-Feliu I, Gómez-Tubío B, Cáceres Y, et al. Microchem. J., 2018, 138: 72.
[3] Masi G, Bernardi E, Martini C, et al. J. Cult. Herit., 2020, 45: 122.
[4] Ager F J, Moreno-Suárez A I, Scrivano S, et al. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact Mater Atoms, 2013, 306: 241.
[5] Moreno-Suárez A I, Ager F J, Scrivano S, et al. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact Mater Atoms, 2015, 358: 93.
[6] Ager F J, Respaldiza M A, Scrivano S, et al. Radiat. Phys. Chem., 2020, 167: 108324.
[7] Ager F J, Gómez-Tubío B, Paúl A, et al. Microchem. J., 2016, 126: 149.
[8] Andric V, Gajic-Kva( sˇ )čev M, Crkvenjakov D K. Microchem. J., 2021, 167: 106267.
[9] dos Santos H C, Caliri C, Pappalardo L, et al. Microchem. J., 2018, 140: 96.
[10] Kokiasmenou E, Caliri C, Kantarelou V, et al. J. Archaeol. Sci-Rep, 2020, 29: 102079.
[11] Franceschi E, Locardi F. J. Cult. Herit., 2014, 15(5): 522.
[12] Alfeld M, Mulliez M, Devogelaere J, et al. Microchem. J., 2018, 141: 395.
[13] Cotte M, Genty-Vincent A, Janssens K, et al. C. R. Physique., 2018, 19: 575.
[14] Botto A, Campanelia B, Legnaioli S, et al. J. Anal. Atom. Spectrom., 2019, 34(1): 81.
[15] Alberghina M F, Barraco R, Brai M, et al. Spectrochim. Acta B, 2011, 66: 129.
[16] Cerrato R, Casal A, Mateo M P, et al. Spectrochim. Acta B, 2017, 130: 1.
[17] Bai X S, Allegre H, Gosselin M, et al. Spectrochim. Acta B, 2020, 172: 105964.
[18] Palomar T, Oujja M, García-Heras M, et al. Spectrochim. Acta B, 2013, 87: 114.
[19] Caneve L, Diamanti A, Grimaldi F, et al. Spectrochim. Acta B, 2010, 65: 702.
[20] Yin Y, Sun D, Yu Z, et al. J. Cult. Herit., 2021, 47: 109.
[21] Kuzmanovic M, Stancalie A, Milovanovic D, et al. Opt. Laser Technol., 2021, 134: 106599.
[22] Veneranda M, Prieto-Taboada N, Fdez-Ortiz de V S, et al. Spectrochim. Acta A, 2018, 203: 201.
[23] Senesi G S, Harmon R S, Hark R R. Spectrochim. Acta B, 2021, 175: 106013.
[24] Lazic V, Vadrucci M, Fantoni R, et al. Spectrochim. Acta B, 2018, 149: 1.
[25] Pagnin L, Brunnbauer L, Wiesinger R, et al. Anal. Bioanal. Chem., 2020, 412: 3187.
[26] Siozos P, Hausmann N, Holst M, et al. J. Archaeol. Sci-Rep, 2021, 35: 102769.
[27] Senesi G S, Campanella B, Grifoni E, et al. Spectrochim. Acta B, 2018, 143: 91.
[28] Chen F, Lu W, Chu Y, et al. Spectrochim. Acta B, 2021, 180: 106160.
[29] WANG Fen, SHI Pei, LUO Hong-jie, et al(王 芬, 施 佩, 罗宏杰, 等). Sciences of Conservation and Archaeology(文物保护与考古科学), 2018, 30(5): 15.
[30] Shi P, Wang F, Wang Y, et al. Ceram. Int., 2017, 43(15): 11616.
[31] Liang Z P, Jiang K X, Zhang T A. Corros. Sci., 2021, 191: 109721.
[32] Jin P J, Zhang W Q, Wang Q J, et al. Corros. Sci., 2014, 89: 268.
[33] Rusu R D, Simionescu B, Oancea A V, et al. Spectrochim. Acta A, 2016, 168: 218.
[34] Oujja M, Sanz M, Rebollar E, et al. Spectrochim. Acta A, 2013, 102: 7.
[35] Masi G, Andrea B, Jérôme E, et al. Appl. Surf. Sci., 2018, 433: 468.
[36] Wang T, Wang J, Wu Y. Corros. Sci., 2015, 97: 89.
[37] YI Chuan-zhen(裔传臻). Sciences of Conservation and Archaeology (文物保护与考古科学), 2018, 30(3): 135.
[38] Li Y, Wu S, Yang J. J. Eur. Ceram. Soc., 2021, 41(13): 6744.
[39] Stanzani E, Bersani D, Lottici P P, et al. Vib. Spectrosc., 2016, 85: 62.
[40] Chiriu D, Ricci P C, Scattini M, et al. Vib. Spectrosc., 2018, 97: 8.
[41] TAN Hui-jiao, DANG Rui(谭慧姣, 党 睿). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2021, 41(8): 2474.
[42] Becerra J, Mateo M, Ortiz P, et al. J. Cult. Herit., 2019, 38: 126.
[43] Rosi F, Clementi C, Paolantoni M, et al. J. Raman Spectrosc., 2013, 44: 1451.
[44] Pozzi F, van den Berg K J, Fiedler I, et al. J. Raman Spectrosc., 2014, 45: 1119.
[45] Shabunya-Klyachkovskaya E V, Kulakovich O S, Gaponenko S V. Spectrochim. Acta A, 2019, 222: 117235.
[46] Fazio A T, López M M, Temperini M L A, et al. Vib. Spectrosc., 2018, 97: 129.
[47] YI Xiao-hui, LONG Kun, REN Shan-shan, et al(易晓辉, 龙 堃, 任珊珊, 等). Sciences of Conservation and Archaeology(文物保护与考古科学), 2018, 30(3): 21.
[48] Chen Z W, Gu A, Zhang X, et al. Chemometr. Intell. Lab., 2017, 171: 226.
[49] SUN Mei-jun, CHAI Bo-long, ZHANG Dong, et al(孙美君,柴勃隆,张 冬,等). Sciences of Conservation and Archaeology(文物保护与考古科学), 2016,28(4):1.
[50] Rosi F, Federici A, Brunetti B G, et al. Anal. Bioanal. Chem., 2011, 399: 3133.
[51] Bruni S, Guglielmi V, Foglia E D, et al. Spectrochim. Acta A, 2018, 191(15): 88.
[52] Lamhasni T, El-Marjaoui H, Bakkali A E, et al. Chemosphere, 2019, 225: 517.
[53] Iwanicka M, Moretti P, van Oudheusden S, et al. Microchem. J., 2018, 138: 7.
[54] Salvado N, Buti S, Aranda M A G, et al. Anal. Methods, 2014, 6(11): 3610.
[55] Cheilakou E, Troullions M, Koul M. J. Archaeol. Sci., 2014, 41: 541.
[56] Cosentino A. E-conservation J, 2014, 2: 54.
[57] Tamburini D, Dyer J. Dyes Pigments, 2019, 162: 494.
[58] Asscher Y, Angelini I, Secco M, et al. Journal of Heritage, 2019, 40: 317.
[59] Jones C, Duffy C, Gibson A, et al. Journal of Heritage, 2020, 45: 339.
[60] Peng J, Yu K, Wang J, et al. Journal of Heritage, 2019, 36: 32.
[61] Lugli F, Sciutto G, Oliveri P, et al. Talanta, 2021, 226: 122126.
|
[1] |
CHENG Jia-wei1, 2,LIU Xin-xing1, 2*,ZHANG Juan1, 2. Application of Infrared Spectroscopy in Exploration of Mineral Deposits: A Review[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 15-21. |
[2] |
ZHAO Wen-hua1, 2, HAN Xiang-na1*, YE Lin2, BAI Jiu-jiang2. Accurate Identification of Common Soluble Salts in Cultural Relics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3826-3831. |
[3] |
ZHENG Ni-na1, 2*, XIE Pin-hua1, QIN Min1, DUAN Jun1. Research on the Influence of Lamp Structure of the Combined LED Broadband Light Source on Differential Optical Absorption Spectrum
Retrieval and Its Removing Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3339-3346. |
[4] |
HE Yan-ping, WANG Xin, LI Hao-yang, LI Dong, CHEN Jin-quan, XU Jian-hua*. Room Temperature Synthesis of Polychromatic Tunable Luminescent Carbon Dots and Its Application in Sensitive Detection of Hemoglobin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3365-3371. |
[5] |
KANG Ming-yue1, 3, WANG Cheng1, SUN Hong-yan3, LI Zuo-lin2, LUO Bin1*. Research on Internal Quality Detection Method of Cherry Tomatoes Based on Improved WOA-LSSVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3541-3550. |
[6] |
GUO Ge1, 3, 4, ZHANG Meng-ling3, 4, GONG Zhi-jie3, 4, ZHANG Shi-zhuang3, 4, WANG Xiao-yu2, 5, 6*, ZHOU Zhong-hua1*, YANG Yu2, 5, 6, XIE Guang-hui3, 4. Construction of Biomass Ash Content Model Based on Near-Infrared
Spectroscopy and Complex Sample Set Partitioning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3143-3149. |
[7] |
ZHANG Yue1, 3, ZHOU Jun-hui1, WANG Si-man1, WANG You-you1, ZHANG Yun-hao2, ZHAO Shuai2, LIU Shu-yang2*, YANG Jian1*. Identification of Xinhui Citri Reticulatae Pericarpium of Different Aging Years Based on Visible-Near Infrared Hyperspectral Imaging[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3286-3292. |
[8] |
ZHANG Jun-he, YU Hai-ye, DANG Jing-min*. Research on Inversion Model of Wheat Polysaccharide Under High Temperature and Ultraviolet Stress Based on Dual-Spectral Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2705-2709. |
[9] |
YU Yang1, ZHANG Zhao-hui1, 2*, ZHAO Xiao-yan1, ZHANG Tian-yao1, LI Ying1, LI Xing-yue1, WU Xian-hao1. Effects of Concave Surface Morphology on the Terahertz Transmission Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2843-2848. |
[10] |
LI Xin-xing1, 2, ZHANG Ying-gang1, MA Dian-kun1, TIAN Jian-jun3, ZHANG Bao-jun3, CHEN Jing4*. Review on the Application of Spectroscopy Technology in Food Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2333-2338. |
[11] |
ZHANG Zi-hao1, GUO Fei3, 4, WU Kun-ze1, YANG Xin-yu2, XU Zhen1*. Performance Evaluation of the Deep Forest 2021 (DF21) Model in
Retrieving Soil Cadmium Concentration Using Hyperspectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2638-2643. |
[12] |
LI Bin, SU Cheng-tao, YIN Hai, LIU Yan-de*. Hyperspectral Imaging Technology Combined With Machine Learning for Detection of Moldy Rice[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2391-2396. |
[13] |
GONG Xin1, 2, HAN Xiang-na1*, CHEN Kun-long1. Anti-Aging Performance Evaluation of Acrylate Emulsion Used for Cultural Relics Conservation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2181-2187. |
[14] |
PU Gui-juan1, 2, CHENG Si-yang3*, LI Song-kui4, LÜ Jin-guang2, CHEN Hua5, MA Jian-zhong3. Spectral Inversion and Variation Characteristics of Tropospheric NO2
Column Density in Lhasa, Tibet[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1725-1730. |
[15] |
ZHANG Mei-zhi1, ZHANG Ning1, 2, QIAO Cong1, XU Huang-rong2, GAO Bo2, MENG Qing-yang2, YU Wei-xing2*. High-Efficient and Accurate Testing of Egg Freshness Based on
IPLS-XGBoost Algorithm and VIS-NIR Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1711-1718. |
|
|
|
|