|
|
|
|
|
|
Accurate Identification of Common Soluble Salts in Cultural Relics |
ZHAO Wen-hua1, 2, HAN Xiang-na1*, YE Lin2, BAI Jiu-jiang2 |
1. Institute of Cultural Heritage and History of Science & Technology, University of Science and Technology Beijing, Beijing 100083, China
2. Chongqing Culture Relics and Archaeology Research Institute (Chongqing Cultural Heritage Protection Center), Chongqing 400013, China
|
|
|
Abstract Salt damage is a common and serious disease in porous cultural relics. Complex water and salt activities make the salt continuously destroy the cultural relics. Accurate identification of soluble salts in cultural relics is anessential prerequisite for studying the salt damage mechanism and management, and the design and development of appropriate protection materials for cultural relics. In this study, an operational procedure for the extraction and identification of soluble salts in cultural relics was established. Through the optimization of ion chromatography (IC), optical microscopy, infrared spectroscopy (FTIR), Raman spectroscopy (Raman), and scanning electron microscopy (SEM-EDS), accurate identification of common soluble salts in cultural relics has been achieved. The research shows that NaCl can be identified by IC (Na+ and Cl- in leachate), microscopic observation (cubic crystal) and SEM-EDS (mainly containing Na and Cl elements); CaCl2 can be identified by IC (Ca2+, Cl-) and SEM-EDS (Ca, Cl elements); Na2SO4 can be identified by IC (Na+, SO2-4), microscopic observation (clumped or cluster crystal), FTIR (main peaks 1 134, 637, 615 cm-1), Raman (main peak 993 cm-1) and SEM-EDS (Na, S, O elements); CaSO4 can be identified by IC (Ca2+, SO2-4), microscopic observation (hexagonal prism, needle or rod-shaped crystal), FTIR (1 144, 668, 603 cm-1), Raman (1 017 cm-1) and SEM-EDS (Ca, S, O elements); NaNO3 can be identified by IC (Na+, NO-3), FTIR (1 379, 1 353, 837 cm-1), Raman (1 071 cm-1) and SEM-EDS (Na, N, O elements); Ca(NO3)2·4H2O can be identified by IC (Ca2+, NO-3), FTIR (1 437, 1 367, 1 047 cm-1), Raman (1 059 cm-1) and SEM-EDS (Ca, N, O elements). In addition, cubic NaCl, clumped, cluster or flake Na2SO4, hexagonal prism, needle or rod-shaped CaSO4can be directly identified through microscopic morphology observation. CaCl2, NaNO3 and Ca(NO3)2·4H2O have strong hygroscopicity and have rapid deliquescence when exposed to room temperature, according to which it can be determined. This identification technology combines common instruments, has relatively low cost, is simple and easy to operate, and has reliable results. It can be used to accurately identify of soluble salts in cultural relics of different materials, with good prospects for application and promotion.
|
Received: 2022-12-29
Accepted: 2023-05-08
|
|
Corresponding Authors:
HAN Xiang-na
E-mail: jayna422@ustb.edu.cn
|
|
[1] Zehnder K. Environmental Geology, 2007, 52(2):353.
[2] LI Li,WANG Si-jing,TANIMOTO C(李 黎,王思敬,谷本親伯). Chinese Journal of Rock Mechanics and Engineering(岩石力学与工程学报),2008,(6):1217.
[3] HUANG Si-ping,LI Yu-hu,ZHAO Gang,et al(黄四平,李玉虎,赵 岗,等). Chinese Journal of Soil Science(土壤通报),2012,43(2):407.
[4] YANG Shan-long,GUO Qing-lin,WANG Xu-dong(杨善龙,郭青林,王旭东). Dunhuang Research(敦煌研究),2013,(1):56.
[5] CHEN Gang-quan,HU Hong-yan,LI Yan-fei,et al(陈港泉,胡红岩,李燕飞,等). Surface Technology(表面技术),2016,45(10):162.
[6] QIAN Ling,XIA Yin,HU Hong-yan,et al(钱 玲,夏 寅,胡红岩,等). Analysis and Testing Technology and Instruments(分析测试技术与仪器),2016,22(2):80.
[7] ZHANG Cai-hong,ZHANG Shang-xin,QIAN Ling,et al(张彩红,张尚新,钱 玲,等). Chemical Research and Application(化学研究与应用),2016,28(11):1546.
[8] QIAN Ling,ZHANG Shang-xin,HU Hong-yan,et al(钱 玲,张尚欣,胡红岩,等). Analysis and Testing Technology and Instruments(分析测试技术与仪器),2016,22(4):209.
[9] LIU Ren-zhi,ZHANG Bing-jian,WEI Guo-feng,et al(刘仁植,张秉坚,魏国锋,等). Sciences of Conservation and Archaeology(文物保护与考古科学),2016,28(2):101.
[10] JI Juan,WANG Yong-jin,MA Tao,et al(纪 娟,王永进,马 涛,等). Sciences of Conservation and Archaeology(文物保护与考古科学),2020,32(2):22.
[11] LI Yan-fei,SU Bo-min,FAN Yu-quan(李燕飞,苏伯民,范宇权). Dunhuang Research(敦煌研究),2008,(6):91.
[12] CHEN Gang-quan,YU Zong-ren(陈港泉,于宗仁). Dunhuang Research(敦煌研究),2008,(6):39.
[13] WANG Yong-jin,YU Qun-li,YAN Min,et al(王永进,于群力,阎 敏,等). Sciences of Conservation and Archaeology(文物保护与考古科学),2010,22(3):15.
[14] YU Zong-ren,WANG Yan-wu,WANG Xiao-wei,et al(于宗仁,王彦武,王小伟,等). Advances in Earth Science(地球科学进展),2017,32(6):668.
[15] YANG Shan-long,WANG Yan-wu,SU Bo-min,et al(杨善龙,王彦武,苏伯民,等). Dunhuang Research(敦煌研究),2018,(1):136.
[16] ZHANG Ya-xu,YU Zong-ren,WANG Li-qin,et al(张亚旭,于宗仁,王丽琴,等). Dunhuang Research(敦煌研究),2021,(1):148.
[17] HUANG Si-ping,ZHAO Gang,LI Yu-hu,et al(黄四平,赵 岗,李玉虎,等). Acta Pedologica Sinica(土壤学报),2011,48(2):295.
[18] HUANG Si-ping,HU Zai-qiang,WANG Su(黄四平,胡再强,王 肃). Journal of Xianyang Normal University(咸阳师范学院学报),2014,29(4):18.
[19] DU Hong-ying,ZHOU Lei,SU Bo-min,et al(杜红英,周 雷,苏伯民,等). Dunhuang Research(敦煌研究),2009,(6):44.
[20] SU Zhen-yan,YANG Bing-zhuo,ZHANG Hu-yuan(苏振妍,杨冰卓,张虎元). Journal of Lanzhou University(Natural Sciences)[兰州大学学报(自然科学版)],2021,57(2):226.
[21] CHEN Gang-quan, SU Bo-min, FAN Zai-xuan, et al(陈港泉,苏伯民,樊再轩,等). Study on the Key Technology of Desalination of Ancient Murals(古代壁画脱盐关键技术研究). China Cultural Relics News(中国文物报),2010:013.
[22] HU Hong-yan,XIA Yin,JIN Zhi-liang,et al(胡红岩,夏 寅,靳治良,等). Materials China(中国材料进展),2012,31(11):37.
[23] DANG Xiao-juan,RONG Bo,DUAN Ping,et al(党小娟,容 波,段 萍,等). Sciences of Conservation and Archaeology(文物保护与考古科学),2012,24(2):50.
[24] HAN Xiang-na,ZHAO Wen-hua,CHEN Cong,et al(韩向娜,赵文华,陈 熜,等). Geological Review(地质论评),2022,68(1):81.
[25] ZHAO Wen-hua,HAN Xiang-na,CHEN Cong,et al(赵文华,韩向娜,陈 熜,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2022,42(2):561.
[26] HAN Xiang-na,ZHAO Wen-hua,LI Chen-yuan,et al(韩向娜,赵文华,李辰元,等). Acta Palaeontologica Sinica(古生物学报),2022,61(1):151.
[27] WAN Xu-sheng,LAI Yuan-ming(万旭升,赖远明). Journal of Glaciology and Geocryology(冰川冻土),2016,38(2):431.
[28] ZHENG Zhi-hua,GUO Xun(郑志华,郭 迅). Journal of Institute of Disaster Prevention(防灾科技学院学报),2020,22(4):43.
[29] WENG Shi-fu,XU Yi-zhuang(翁诗甫,徐怡庄). Fourier Transform Infrared Spectrometric Analysis, Third Edition(傅里叶变换红外光谱分析. 第3版). Beijing:Chemical Industry Press(北京:化学工业出版社),2016:423.
[30] HAN Jing-yi,GUO Li-he,CHEN Wei-shi(韩景仪,郭立鹤,陈伟十). Mineral Raman Spectrum Atlas(矿物拉曼光谱图集). Beijing:Geology Press(北京:地质出版社),2016:72.
[31] LI Ming,LI Zhi-li,ZHANG Ze-qiang,et al(李 铭,李智力,张泽强,等). Inorganic Chemicals Industry(无机盐工业),2022,54(6):66.
[32] WENG Shi-fu,XU Yi-zhuang(翁诗甫,徐怡庄). Fourier Transform Infrared Spectrometric Analysis, Third Edition(傅里叶变换红外光谱分析. 第3版). Beijing:Chemical Industry Press(北京:化学工业出版社),2016:446.
[33] RRUFF database[EB/OL]. https://rruff.info/.
[34] WANG Lu-qi,XIONG Dao-ling,LI Yang,et al(王露琦,熊道陵,李 洋,等). Nonferrous Metals Science and Engineering(有色金属科学与工程),2018,9(3):34.
[35] DUAN Zheng-yang,LI Jian-xi,ZHENG Shu-rui,et al(段正洋,李建锡,郑书瑞,等). Bulletin of the Chinese Ceramic Society(硅酸盐通报),2016,35(1):198.
[36] FEI Wen-li,LI Zheng-fang,WANG Heng(费文丽,李征芳,王 珩). Industrial Minerals & Processing(化工矿物与加工),2002,(9):31.
|
[1] |
GONG Xin1, 2, HAN Xiang-na1*, CHEN Kun-long1. Anti-Aging Performance Evaluation of Acrylate Emulsion Used for Cultural Relics Conservation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2181-2187. |
[2] |
CHEN Dong-mei1, 2, MA Liang-liang2, ZHANG Xian-ming1, 3*. Application Progress of Non-Destructive Spectroscopy on Conversation of Cultural Relics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 334-341. |
[3] |
GONG Xin1, 2, HAN Xiang-na1*, CHEN Kun-long1. UV Aging Characterization of Paraloid Acrylic Polymers for Art
Conservation by Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2175-2180. |
[4] |
WU Shuang-cheng1, 3, CHENG Pu2, LI Ting-ting2, YANG Yang2, TIE Fu-de1*, JIN Pu-jun2*. Multispectral Analysis on Lacquer Films of Boxes Excavated From Haiqu Cemetery During the Han Dynasties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1150-1155. |
[5] |
ZHAO Wen-hua1, HAN Xiang-na1*, CHEN Cong1, WANG Xiao-lin2, 3, 4*. Spectral Analysis of the Weathering of Yardang Buried Pterosaur Fossils——A Case Study of Yardang Near the No.2 Water Source of Dahaidao[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 561-567. |
[6] |
WANG Cong1, Mara Camaiti2, TIE Fu-de1,3, ZHAO Xi-chen4, CAO Yi-jian5*. Preliminary Study on the Non-Invasive Characterization of Organic Binding Media Employing a Portable Hyperspectral Sensor[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2886-2891. |
[7] |
ZHOU Yue1, 2, YAN Ling-tong1, LI Li1, SUN He-yang1, FENG Xiang-qian1*. The Progress of the Application of X-Ray Spectroscopy in the Nondestructive Analysis of Relics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1329-1335. |
[8] |
WANG Li-qin1*, MA Yan-ni1, ZHANG Ya-xu2, ZHAO Xing1, HE Qiu-ju3, GUO Jin-yi1, REN Han-ting1. Pigment Identification of Sleeping Buddha at World Cultural Heritage Dazu Rock Carvings With μ-Raman Spectroscopy and Related Research[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(10): 3199-3204. |
[9] |
SHEN Da-wa1, ZHENG Fei2, WU Na1, 3, ZHANG Yi-chi1, WANG Zhi-liang1. Trend Analysis of Raman Application in Cultural Relics and Archaeological Research[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(09): 2657-2664. |
[10] |
ZHAO Ling-wei1, 2, CHEN Hai-long3, ZHAO Hong-xia1, DONG Jun-qing1, LI Qing-hui1*. A Scientific Research of the Painted Potteries of the Yangshao Culture from the Miao-Di-Gou Site[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1420-1429. |
[11] |
HUANG Jian-hua1,2,YANG Lu3,4,5*,YU Shan-shan3 . Confocal Micro Raman Spectroscopy for the Identification of the Binder Used in Chinese Painted Cultural Relics [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2011, 31(03): 687-690. |
[12] |
WANG Li-qin1, 2,LIANG Guo-zheng1,DANG Gao-chao3*, WANG Fang4 . Studies on Relics Conservation by Diffuse Reflectance Spectroscopy [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2005, 25(08): 1293-1296. |
|
|
|
|