|
|
|
|
|
|
Detection of Hydrolyzed Leather Protein Adulteration in Infant Formula Based on Wavelength Attention Convolutional Network and Near-Infrared Spectroscopy |
CHEN Guo-xi1, 2, ZHOU Song-bin2*, CHEN Qi1, LIU Yi-sen2, ZHAO Lu-lu2, HAN Wei2 |
1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
2. Institute of Intelligent Manufacturing, Guangdong Academy of Sciences, Guangzhou 510070, China
|
|
|
Abstract In recent years, deep learning has made a series of breakthroughs in processing near-infrared spectroscopy, Raman spectroscopy, fluorescence spectroscopy and other spectroscopy data. However, due to the high demand for deep learning methods for the size of the training set, and it is difficult to obtain a large number of labeled samples in the field of analytical chemistry, the overfitting issue has always been highly-concerned by researchers in the application of deep neural network in chemometrics. In response to this problem, this paper proposed a near-infrared spectra modeling method based on the wavelength attention-convolutional neural networks (WA-CNN) and applied it to the quantitative analysis of hydrolyzed leather protein (HPL) adulteration in infant formula. WA-CNN adds a wavelength attention module based on the traditional convolutional network. This module uses convolution operation to learn the attention weights and activates the effective bands in the form of multiplication, thereby effectively alleviating the redundancy and over-fitting problem in NIR modeling based on deep learning. A total of 100 HLP adulterated infant formula samples were tested, and the adulteration ratio was in the range of 0% to 20%. Random sampling was performed 10 times for modeling, in which 60% of the samples were used for training, while the remaining 40% of samples were adopted for testing. The model was evaluated by the mean of root mean square error (RMSEP), coefficient of determination (R2) and relative analysis error (RPD). Three traditional models, namely partial least squares regression (PLS), support vector machine regression (SVR) and conventional one-dimensional convolutional neural network (CNN), were also established for comparison. Compared with the above comparison methods, WA-CNN achieved the best model prediction results and obtained RMSEP=1.32%±0.12%, R2=0.96±0.01, RPD=4.92±0.41. In addition, the results also show that the WA-CNN has a faster and more stable convergence process than the traditional CNN for both the training set and the test set during the training process. Moreover, in the case of different training sample sizes (ranging from 20% to 80%), WA-CNN also achieves the best accuracies among all the examined models.
|
Received: 2021-07-26
Accepted: 2022-04-12
|
|
Corresponding Authors:
ZHOU Song-bin
E-mail: sb.zhou@giim.ac.cn
|
|
[1] Nagraik R, Sharma A, Kumar D, et al. Sensing and Bio-Sensing Research, 2021, 33:100433.
[2] Ejeahalaka K K, ON S L W. Food Chemistry, 2020, 309:125785.
[3] Mabood F, Jabeen F, Hussain J, et al. Vibrational Spectroscopy, 2017, 92: 245.
[4] PANG Jia-feng, TANG Shen, LI Yan-kun, et al(庞佳烽, 汤 谌, 李艳坤, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2020, 40(10): 3235.
[5] dos Santos Pereira E V, de Sousa Fernandes D D, de Araújo M C U, et al. LWT, 2020, 127: 109427.
[6] Liu Y, Zhou S, Han W, et al. Foods, 2021, 10(4): 785.
[7] Shan J, Wang X, Han S, et al. Food Analytical Methods, 2017, 10(4): 999-1006.
[8] Vaddi R, Manoharan P. Infrared Physics & Technology, 2020, 110: 103457.
[9] Acquarelli J, van Laarhoven T, Gerretzen J, et al. Analytica Chimica Acta, 2017, 954: 22.
[10] Date Y, Kikuchi J. Analytical Chemistry, 2018, 90(3): 1805.
[11] Yun Y H, Cao D S, Tan M L, et al. Chemometrics and Intelligent Laboratory Systems, 2014, 130: 76.
[12] Ghosh A K, Das B S, Reddy N. Geoderma Regional,2020,23: e00349.
[13] Palanti S, Alves A, Rodrigues J, et al. International Biodeterioration & Biodegradation, 2021, 162: 105247.
[14] Silva L C R, Folli G S, Santos L P, et al. Vibrational Spectroscopy, 2020, 111: 103158.
[15] Wattenberg M, Viégas F, Johnson I. Distill, 2016, 1(10): e2.
|
[1] |
GAO Feng1, 2, XING Ya-ge3, 4, LUO Hua-ping1, 2, ZHANG Yuan-hua3, 4, GUO Ling3, 4*. Nondestructive Identification of Apricot Varieties Based on Visible/Near Infrared Spectroscopy and Chemometrics Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 44-51. |
[2] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[3] |
HU Cai-ping1, HE Cheng-yu2, KONG Li-wei3, ZHU You-you3*, WU Bin4, ZHOU Hao-xiang3, SUN Jun2. Identification of Tea Based on Near-Infrared Spectra and Fuzzy Linear Discriminant QR Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3802-3805. |
[4] |
LIU Xin-peng1, SUN Xiang-hong2, QIN Yu-hua1*, ZHANG Min1, GONG Hui-li3. Research on t-SNE Similarity Measurement Method Based on Wasserstein Divergence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3806-3812. |
[5] |
BAI Xue-bing1, 2, SONG Chang-ze1, ZHANG Qian-wei1, DAI Bin-xiu1, JIN Guo-jie1, 2, LIU Wen-zheng1, TAO Yong-sheng1, 2*. Rapid and Nndestructive Dagnosis Mthod for Posphate Dficiency in “Cabernet Sauvignon” Gape Laves by Vis/NIR Sectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3719-3725. |
[6] |
WANG Qi-biao1, HE Yu-kai1, LUO Yu-shi1, WANG Shu-jun1, XIE Bo2, DENG Chao2*, LIU Yong3, TUO Xian-guo3. Study on Analysis Method of Distiller's Grains Acidity Based on
Convolutional Neural Network and Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3726-3731. |
[7] |
LUO Li, WANG Jing-yi, XU Zhao-jun, NA Bin*. Geographic Origin Discrimination of Wood Using NIR Spectroscopy
Combined With Machine Learning Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3372-3379. |
[8] |
ZHANG Shu-fang1, LEI Lei2, LEI Shun-xin2, TAN Xue-cai1, LIU Shao-gang1, YAN Jun1*. Traceability of Geographical Origin of Jasmine Based on Near
Infrared Diffuse Reflectance Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3389-3395. |
[9] |
YANG Qun1, 2, LING Qi-han1, WEI Yong1, NING Qiang1, 2, KONG Fa-ming1, ZHOU Yi-fan1, 2, ZHANG Hai-lin1, WANG Jie1, 2*. Non-Destructive Monitoring Model of Functional Nitrogen Content in
Citrus Leaves Based on Visible-Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3396-3403. |
[10] |
HUANG Meng-qiang1, KUANG Wen-jian2, 3*, LIU Xiang1, HE Liang4. Quantitative Analysis of Cotton/Polyester/Wool Blended Fiber Content by Near-Infrared Spectroscopy Based on 1D-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3565-3570. |
[11] |
HUANG Zhao-di1, CHEN Zai-liang2, WANG Chen3, TIAN Peng2, ZHANG Hai-liang2, XIE Chao-yong2*, LIU Xue-mei4*. Comparing Different Multivariate Calibration Methods Analyses for Measurement of Soil Properties Using Visible and Short Wave-Near
Infrared Spectroscopy Combined With Machine Learning Algorithms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3535-3540. |
[12] |
KANG Ming-yue1, 3, WANG Cheng1, SUN Hong-yan3, LI Zuo-lin2, LUO Bin1*. Research on Internal Quality Detection Method of Cherry Tomatoes Based on Improved WOA-LSSVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3541-3550. |
[13] |
HUANG Hua1, LIU Ya2, KUERBANGULI·Dulikun1, ZENG Fan-lin1, MAYIRAN·Maimaiti1, AWAGULI·Maimaiti1, MAIDINUERHAN·Aizezi1, GUO Jun-xian3*. Ensemble Learning Model Incorporating Fractional Differential and
PIMP-RF Algorithm to Predict Soluble Solids Content of Apples
During Maturing Period[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3059-3066. |
[14] |
CHEN Jia-wei1, 2, ZHOU De-qiang1, 2*, CUI Chen-hao3, REN Zhi-jun1, ZUO Wen-juan1. Prediction Model of Farinograph Characteristics of Wheat Flour Based on Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3089-3097. |
[15] |
GUO Ge1, 3, 4, ZHANG Meng-ling3, 4, GONG Zhi-jie3, 4, ZHANG Shi-zhuang3, 4, WANG Xiao-yu2, 5, 6*, ZHOU Zhong-hua1*, YANG Yu2, 5, 6, XIE Guang-hui3, 4. Construction of Biomass Ash Content Model Based on Near-Infrared
Spectroscopy and Complex Sample Set Partitioning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3143-3149. |
|
|
|
|