|
|
|
|
|
|
Evaluation of Aging State of Wire Insulation Materials Based on
Raman Spectroscopy |
FAN Yuan-chao, CHEN Xiao-jing*, HUANG Guang-zao, YUAN Lei-ming, SHI Wen, CHEN Xi |
College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China
|
|
|
Abstract An accurate evaluation of the aging state of wire insulation materials can be used to reduce fire incidences caused by wire insulation aging. In this study, Raman spectrum detection platform, self built aging equipment, accelerated temperature aging and accelerated UV aging tests were applied to evaluate the aging state of 13 kinds of wire insulation materials(polyvinylidene-fluoride,polypropylene,polytetrachloroethylene,nylon,Yada-nylon,polyurethane,latex,perfluoroethylene-propylene-resin,rubber,polyethylene,polyvinyl-chloride). The samples were tested regularly based on temperature aging for 10 time periods. Using 32 hours interval and 15 sample data per aging time, the spectral data of 150 samples of each material (aged) were obtained. Similarly, 13 time periods of UV aging, at a time interval of 16 hours and 15 samples data per aging time, spectral data of 195 UV aging samples were recorded. According to aging period, temperature aging is divided into 10 categories, and UV aging was divided into 13 categories. Linear regression classification and a support vector machine was used to classify the original spectral data. It was found that nylon, polyurethane, Teflon, rubber, etc., have more than 80% accuracy of the two classification algorithms. However, the classification accuracy of some materials was less than 70%. The support vector machine classification of original spectral data consumed a longer time due to alarge number of samples and high spectral dimension. In order to further improve the classification accuracy and speed, the original spectral data were preprocessed by iterative adaptive weighted penalty least square method and five-point cubic smoothing. PCA compression was used to reduce the sample spectral dimension from 2048 to 3.Because the spectral dimension of the reduced sample is less than the number of samples, it can not meet the requirements of linear regression classification.So support vector machine was used for classification. After preprocessing and feature extraction, the classification effect of data was greatly improved, and the classification accuracy of temperature aging and UV aging of all the materials was more than 90%. Furthermore, the classification speed of the support vector machines has also been greatly improved. These results provide a theoretical basis for the effective evaluation of the aging state of wire insulation materials and provide technical support for preventing accidents caused by insulation aging.
|
Received: 2021-08-18
Accepted: 2022-03-01
|
|
Corresponding Authors:
CHEN Xiao-jing
E-mail: chenxj9@163.com
|
|
[1] HU Yi-zhuo,DONG Ming,XIE Jia-cheng,et al(胡一卓,董 明,谢佳成,等). Power System Technology(电网技术),2020,44(4):1276.
[2] Han X,Ouyang M,Lu L,et al. Journal of Power Sources,2014,268(5):658.
[3] HU Li-bin,CHEN Jie,LI Chen-ying,et al(胡丽斌,陈 杰,李陈莹,等). Insulating Materials(绝缘材料),2020,53(2):59.
[4] WANG Si-jing,XIONG Jin-ping,ZUO Yu(王思静,熊金平,左 禹). Synthetic Materials Aging and Application(合成材料老化与应用),2009,38(3):41.
[5] Xia Q,Yuan L M,Chen X,et al. Applied Sciences,2019,9(24):5336.
[6] HU Cheng-long,CHEN Shao-yun,CHEN Jian,et al(胡成龙,陈韶云,陈 建,等). Polymer Bulletin(高分子通报),2014,(3):30.
[7] LIN Mu-song,GUO Kun,ZHANG Sheng,et al(林木松,郭 坤,张 晟,等). Polymer Materials Science Engineering(高分子材料科学与工程),2017,33(12):149.
[8] LÜ Qian-hui,WANG Xiao-hua,SHEN Ai-guo,et al(吕前辉,王小华,沈爱国,等). Journal of Instrumental Analysis(分析测试学报),2019,38(5):612.
[9] Zhang Zhimin,Chen Shan,Liang Yizeng. Analyst,2010,135(5):1138.
[10] Xie Z,Meng L,Feng X,et al. Plasma Science and Technology,2020,22(8):085503.
[11] Naseem I,Togneri R,Bennamoun M. IEEE Transactions on Pattern Analysis & Machine Intelligence,2010,32(11):2106.
[12] NI Ling-gui,et al(倪玲贵,等). China Plastics Industry(塑料工业),2017,45(1):93.
[13] QI Rui-ge,HE Chun-xia,JIN Qiang(祁睿格, 何春霞, 晋 强). Acta Materiae Compositae Sinica(复合材料学报),2020, 37(7):1539.
|
[1] |
LI Jie, ZHOU Qu*, JIA Lu-fen, CUI Xiao-sen. Comparative Study on Detection Methods of Furfural in Transformer Oil Based on IR and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 125-133. |
[2] |
WANG Fang-yuan1, 2, HAN Sen1, 2, YE Song1, 2, YIN Shan1, 2, LI Shu1, 2, WANG Xin-qiang1, 2*. A DFT Method to Study the Structure and Raman Spectra of Lignin
Monomer and Dimer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 76-81. |
[3] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
[4] |
WANG Xin-qiang1, 3, CHU Pei-zhu1, 3, XIONG Wei2, 4, YE Song1, 3, GAN Yong-ying1, 3, ZHANG Wen-tao1, 3, LI Shu1, 3, WANG Fang-yuan1, 3*. Study on Monomer Simulation of Cellulose Raman Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 164-168. |
[5] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[6] |
WANG Lan-hua1, 2, CHEN Yi-lin1*, FU Xue-hai1, JIAN Kuo3, YANG Tian-yu1, 2, ZHANG Bo1, 4, HONG Yong1, WANG Wen-feng1. Comparative Study on Maceral Composition and Raman Spectroscopy of Jet From Fushun City, Liaoning Province and Jimsar County, Xinjiang Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 292-300. |
[7] |
BAI Xue-bing1, 2, SONG Chang-ze1, ZHANG Qian-wei1, DAI Bin-xiu1, JIN Guo-jie1, 2, LIU Wen-zheng1, TAO Yong-sheng1, 2*. Rapid and Nndestructive Dagnosis Mthod for Posphate Dficiency in “Cabernet Sauvignon” Gape Laves by Vis/NIR Sectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3719-3725. |
[8] |
CHENG Hui-zhu1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, MA Qian1, 2, ZHAO Yan-chun1, 2. Genetic Algorithm Optimized BP Neural Network for Quantitative
Analysis of Soil Heavy Metals in XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3742-3746. |
[9] |
LI Wei1, TAN Feng2*, ZHANG Wei1, GAO Lu-si3, LI Jin-shan4. Application of Improved Random Frog Algorithm in Fast Identification of Soybean Varieties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3763-3769. |
[10] |
WANG Zhi-qiang1, CHENG Yan-xin1, ZHANG Rui-ting1, MA Lin1, GAO Peng1, LIN Ke1, 2*. Rapid Detection and Analysis of Chinese Liquor Quality by Raman
Spectroscopy Combined With Fluorescence Background[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3770-3774. |
[11] |
LIU Hao-dong1, 2, JIANG Xi-quan1, 2, NIU Hao1, 2, LIU Yu-bo1, LI Hui2, LIU Yuan2, Wei Zhang2, LI Lu-yan1, CHEN Ting1,ZHAO Yan-jie1*,NI Jia-sheng2*. Quantitative Analysis of Ethanol Based on Laser Raman Spectroscopy Normalization Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3820-3825. |
[12] |
LU Wen-jing, FANG Ya-ping, LIN Tai-feng, WANG Hui-qin, ZHENG Da-wei, ZHANG Ping*. Rapid Identification of the Raman Phenotypes of Breast Cancer Cell
Derived Exosomes and the Relationship With Maternal Cells[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3840-3846. |
[13] |
SHEN Si-cong, ZHANG Jing-xue, CHEN Ming-hui, LI Zhi-wei, SUN Sheng-nan, YAN Xue-bing*. Estimation of Above-Ground Biomass and Chlorophyll Content of
Different Alfalfa Varieties Based on UAV Multi-Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3847-3852. |
[14] |
LI Qi-chen1, 2, LI Min-zan1, 2*, YANG Wei2, 3, SUN Hong2, 3, ZHANG Yao1, 3. Quantitative Analysis of Water-Soluble Phosphorous Based on Raman
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3871-3876. |
[15] |
GUO He-yuanxi1, LI Li-jun1*, FENG Jun1, 2*, LIN Xin1, LI Rui1. A SERS-Aptsensor for Detection of Chloramphenicol Based on DNA Hybridization Indicator and Silver Nanorod Array Chip[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3445-3451. |
|
|
|
|