|
|
|
|
|
|
Fluorescence Spectrum Characteristics of DOC in Black Soil Under
Organic Substitution of Chemical Nitrogen Fertilizer |
ZHANG Jiu-ming1,KUANG En-jun1,CHI Feng-qin1*,LIU Yi-dan4,ZHOU Bao-ku1,XIA Xiao-yu3,WANG Xiao-jun1,SUN Lei1,CHANG Ben-chao1,WEI Dan2 |
1. Institute of Soil, Fertilizer and Environmental Resources, Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
2. Institute of Plant Nutrition and Environmental Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
3. Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
4. College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
|
|
|
Abstract The combined application of organic and inorganic fertilizer is an effective measure to improve soil fertility and reduce the application of inorganic fertilizer. In order to investigate the effect of organic fertilizer instead of inorganic fertilizer (nitrogen fertilizer) on the content and structure of DOC in black soil area, different proportions of organic fertilizer instead of chemical nitrogen fertilizer were used to analyze the content and fluorescence spectrum characteristics of DOC. The results showed that the content of DOC in M treatment was 325.97 mg·kg-1, which was significantly higher than that in other treatments. Compared with CK treatment, the fluorescence peak wavelength of each fertilization treatment decreased to different degrees. DOC’s fluorescence index (FI) ranged from 1.54 to 1.59, and the humification index (Hix) of DOC in all treatments was less than 0.85, indicating that soil DOC was affected by both authigenic and terrestrial sources, and the degree of soil humification was low. A parallel factor analysis identified three fluorescent components: two humus components (fulvic acid like substance and humic acid like substances) and one protein like component (tyrosine like protein substance). The fluorescence intensity of the three components in each fertilization treatment was higher than that in the CK treatment. Among them, the total fluorescence intensity of soil DOC under M and M2N2 treatments were higher, and the fluorescence intensity of the C3 component under M2N2 treatment was the highest. The relative proportion of three organic components in soil DOC was the highest in C1(close to 50%), indicating that small molecular substances accounted for a large proportion in the soil. The application of fertilizer can improve the degree of soil humification, which was conducive to the fixation of soil DOC. And the reasonable application of organic fertilizer combined with chemical nitrogen fertilizer can increase the availability of DOC and improve the ability of soil fertilizer supply.
|
Received: 2021-03-19
Accepted: 2021-10-19
|
|
Corresponding Authors:
CHI Feng-qin
E-mail: fqchi2013@163.com
|
|
[1] SHEN Hong, CAO Zhi-hong, HU Zheng-yi(沈 宏, 曹志洪, 胡正义). Chinese Journal of Ecology(生态学杂志), 1999, 18(3): 32.
[2] Kalbitz K, Solinger S, Park J H, et al. Soil Science, 2000, 165(4): 277.
[3] YU Wan-tai, MA Qiang, ZHAO Xin, et al(宇万太, 马 强, 赵 鑫, 等). Chinese Journal Ecology(生态学杂志), 2007, 26(12): 2013.
[4] LI Yan, BAI Yang, WEI Dan, et al(李 艳, 白 杨, 魏 丹, 等). Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2021, 41(11): 3518.
[5] Li S Y, Li M, Wang G X, et al. Chemical and Biological Technologies in Agriculture, 2019, 6(1): 20.
[6] Gao X T, Tan W B, Zhao Y, et al. Environmental Science and Technology, 2019, 53: 3653.
[7] Helms J R, Stubbins A, Ritchie J D, et al. Limnology and Oceanography, 2008, 53(3): 955.
[8] Li S Y, Li M, Wang G X, et al. Chemical and Biological Technologies in Agriculture, 2019, 6(1): 20.
|
[1] |
LEI Hong-jun1, YANG Guang1, PAN Hong-wei1*, WANG Yi-fei1, YI Jun2, WANG Ke-ke2, WANG Guo-hao2, TONG Wen-bin1, SHI Li-li1. Influence of Hydrochemical Ions on Three-Dimensional Fluorescence
Spectrum of Dissolved Organic Matter in the Water Environment
and the Proposed Classification Pretreatment Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 134-140. |
[2] |
GU Yi-lu1, 2,PEI Jing-cheng1, 2*,ZHANG Yu-hui1, 2,YIN Xi-yan1, 2,YU Min-da1, 2, LAI Xiao-jing1, 2. Gemological and Spectral Characterization of Yellowish Green Apatite From Mexico[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 181-187. |
[3] |
SONG Yi-ming1, 2, SHEN Jian1, 2, LIU Chuan-yang1, 2, XIONG Qiu-ran1, 2, CHENG Cheng1, 2, CHAI Yi-di2, WANG Shi-feng2,WU Jing1, 2*. Fluorescence Quantum Yield and Fluorescence Lifetime of Indole, 3-Methylindole and L-Tryptophan[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3758-3762. |
[4] |
YANG Ke-li1, 2, PENG Jiao-yu1, 2, DONG Ya-ping1, 2*, LIU Xin1, 2, LI Wu1, 3, LIU Hai-ning1, 3. Spectroscopic Characterization of Dissolved Organic Matter Isolated From Solar Pond[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3775-3780. |
[5] |
XUE Fang-jia, YU Jie*, YIN Hang, XIA Qi-yu, SHI Jie-gen, HOU Di-bo, HUANG Ping-jie, ZHANG Guang-xin. A Time Series Double Threshold Method for Pollution Events Detection in Drinking Water Using Three-Dimensional Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3081-3088. |
[6] |
ZHANG Juan-juan1, 2, NIU Zhen1, 2, MA Xin-ming1, 2, WANG Jian1, XU Chao-yue1, 2, SHI Lei1, 2, Bação Fernando3, SI Hai-ping1, 2*. Hyperspectral Feature Extraction and Estimation of Soil Total Nitrogen Based on Discrete Wavelet Transform[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3223-3229. |
[7] |
JIA Yu-ge1, YANG Ming-xing1, 2*, YOU Bo-ya1, YU Ke-ye1. Gemological and Spectroscopic Identification Characteristics of Frozen Jelly-Filled Turquoise and Its Raw Material[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2974-2982. |
[8] |
YANG Xin1, 2, XIA Min1, 2, YE Yin1, 2*, WANG Jing1, 2. Spatiotemporal Distribution Characteristics of Dissolved Organic Matter Spectrum in the Agricultural Watershed of Dianbu River[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2983-2988. |
[9] |
ZHU Yan-ping1, CUI Chuan-jin1*, CHENG Peng-fei1, 2, PAN Jin-yan1, SU Hao1, 2, ZHANG Yi1. Measurement of Oil Pollutants by Three-Dimensional Fluorescence
Spectroscopy Combined With BP Neural Network and SWATLD[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2467-2475. |
[10] |
QIU Cun-pu1, 2, TANG Xiao-xue2, WEN Xi-xian4, MA Xin-ling2, 3, XIA Ming-ming2, 3, LI Zhong-pei2, 3, WU Meng2, 3, LI Gui-long2, 3, LIU Kai2, 3, LIU Kai-li4, LIU Ming2, 3*. Effects of Calcium Salts on the Decomposition Process of Straw and the Characteristics of Three-Dimensional Excitation-Emission Matrices of the Dissolved Organic Matter in Decomposition Products[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2301-2307. |
[11] |
SHI Chuan-qi1, LI Yan2, HU Yu3, YU Shao-peng1*, JIN Liang2, CHEN Mei-ru1. Fluorescence Spectral Characteristics of Soil Dissolved Organic Matter in the River Wetland of Northern Cold Region, China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1517-1523. |
[12] |
LI Yuan-jing1, 2, CHEN Cai-yun-fei1, 2, LI Li-ping1, 2*. Spectroscopy Study of γ-Ray Irradiated Gray Akoya Pearls[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1056-1062. |
[13] |
LIU Xia-yan1, CAO Hao-xuan1, MIAO Chuang-he1, LI Li-jun2, ZHOU Hu1, LÜ Yi-zhong1*. Three-Dimensional Fluorescence Spectra of Dissolved Organic Matter in Fluvo-Aquic Soil Profile Under Long-Term Composting Treatment[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 674-684. |
[14] |
CHEN Lei1, 2, HAO Xiao-yu1, MA Xing-zhu1, ZHOU Bao-ku1, WEI Dan3, ZHOU Lei4, LIU Rong-le5, WANG Hong2*. Changes in Organic Carbon Components and Structure of Black Rhizosphere Soil Under Long-Term Different Fertilization[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3883-3888. |
[15] |
LÜ Yang1, PEI Jing-cheng1*, ZHANG Yu-yang2. Chemical Composition and Spectra Characteristics of Hydrothermal Synthetic Sapphire[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3546-3551. |
|
|
|
|