|
|
|
|
|
|
Determination of Strontium in Strontium-Rich Mineral Water Using Solution Cathode Glow Discharge-Atomic Emission Spectrometry |
ZHENG Pei-chao, LUO Yuan-jiang, WANG Jin-mei*, HU Qiang, YANG Yang, MAO Xue-feng, LAI Chun-hong, FENG Chu-hui, HE Yu-tong |
College of Optoelectronic Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065, China |
|
|
Abstract Strontium element is an indispensable trace element in the human body, and strontium rich mineral water is an important means of supplementing strontium in the human body. At present, the conventional analytical methods used to detect strontium elements in strontium-rich mineral water, such as AAS, AFS, IC, ICP-AES/MS, etc., have the advantages of high detection sensitivity and good detection stability. However, these instruments are bulky, expensive, and energy-intensive, moreover some require inert/special gases, which are not suitable for field, real-time and online continuous monitoring. Therefore, it is of great significance to develop a miniaturized, low-cost and rapid spectral detection technology for the effective measurement of strontium. In recent years, Solution cathode glow discharge-atomic emission spectrometry (SCGD-AES) is a rapidly developing for detecting metal elements in an aqueous solution. Here, the SCGD-AES system was established to measure the concentration of strontium in strontium-rich mineral water. The experimental parameters such as discharge current, sample flow rate and pH on the SBR of strontium were investigated, and the optimal experimental parameters for quantitative analysis of strontium were as follows: 1.85 mL·min-1 for the sample flow rate, 75 mA for the discharge current, and the electrolyte acidified to pH 1.0 by HNO3. 460.77 nm was selected as the strontium analytical spectrum line, and the strontium solution was determined under the above optimal working conditions. The emission spectral stability of strontium was 0.52% (n=21). The strontium concentration shows a linear relationship with its emission intensity in the range of 0.1~20 mg·L-1, and the linear correlation coefficient is 0.999 6. The detection limits of strontium were 29 μg·L-1 for the homemade SCGD-AES. The established SCGD-AES detection system measured three types of strontium-rich mineral water in the market, and the results were agreed with the results of inductively coupled plasma-atomic emission spectrometry. In addition, the recoveries of bottled mineral water are 98.8%~107.6%. The results show that SCGD-AES is an effective method for the determination of strontium in strontium-rich mineral water.
|
Received: 2020-12-13
Accepted: 2021-03-28
|
|
Corresponding Authors:
WANG Jin-mei
E-mail: wangjm@cqupt.edu.cn
|
|
[1] Seale J V, Fallaize R, Lovegrove J A. Nutrition Research Reviews, 2016, 29(2): 143.
[2] Zeng J K, Guo J S, Sun Z Y, et al. Bioactive Materials, 2020, 5(3): 435.
[3] Luciano-Mateo F, Cabre N, Nadal M, et al. Journal of Trace Elements in Medicine and Biology, 2018, 48: 8.
[4] Skalny A V, Tinkov A A, Bohan T G, et al. Biological Trace Element Research, 2020, 193(1): 64.
[5] Padrón P, Paz S, Rubio C, et al. Biological Trace Element Research, 2019, 194(2): 616.
[6] Panda B, Chidambaram S, Thivya C, et al. Environmental Earth Sciences, 2019, 79(1): 17.
[7] Zheng P C, Zhai X, Wang J M, et al. Analytical Letters, 2018, 51(14): 2304.
[8] Wang J M, Li S Y, Zheng P C, et al. Journal of Analytical Atomic Spectrometry, 2018, 33(6): 1014.
[9] Zheng P C, Gong Y M, Wang J M, et al. Analytical Letters, 2018, 50(9): 1512.
[10] LIU Feng-kui, ZU Wen-chuan, ZHOU Xiao-ping, et al(刘丰奎,祖文川,周晓萍,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2019, 39(4): 1252.
[11] Peng X X, Guo X H, Ge F, et al. Journal of Analytical Atomic Spectrometry, 2019, 34(2): 394.
[12] Zhou Y J, Ma J, Li F, et al. Microchemical Journal, 2020, 158: 105224.
[13] Zheng P C, Wang N S, Wang J M, et al. Microchemical Journal, 2019, 151: 104216.
[14] Wang J M, Tang P F, Zheng P C, et al. Journal of Analytical Atomic Spectrometry, 2017, 32(10): 1925.
[15] Krahling T, Muller S, Meyer C, et al. Journal of Analytical Atomic Spectrometry, 2011, 26(10): 1974.
[16] Quarles C D, Carado A J, Barinaga C J, et al. Analytical and Bioanalytical Chemistry, 2012, 402(1): 261. |
[1] |
ZHENG Hong-quan, DAI Jing-min*. Research Development of the Application of Photoacoustic Spectroscopy in Measurement of Trace Gas Concentration[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 1-14. |
[2] |
YANG Guang1, JIN Chun-bai1, REN Chun-ying2*, LIU Wen-jing1, CHEN Qiang1. Research on Band Selection of Visual Attention Mechanism for Object
Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 266-274. |
[3] |
GAO Hong-sheng1, GUO Zhi-qiang1*, ZENG Yun-liu2, DING Gang2, WANG Xiao-yao2, LI Li3. Early Classification and Detection of Kiwifruit Soft Rot Based on
Hyperspectral Image Band Fusion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 241-249. |
[4] |
WU Hu-lin1, DENG Xian-ming1*, ZHANG Tian-cai1, LI Zhong-sheng1, CEN Yi2, WANG Jia-hui1, XIONG Jie1, CHEN Zhi-hua1, LIN Mu-chun1. A Revised Target Detection Algorithm Based on Feature Separation Model of Target and Background for Hyperspectral Imagery[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 283-291. |
[5] |
WANG Zhi-qiang1, CHENG Yan-xin1, ZHANG Rui-ting1, MA Lin1, GAO Peng1, LIN Ke1, 2*. Rapid Detection and Analysis of Chinese Liquor Quality by Raman
Spectroscopy Combined With Fluorescence Background[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3770-3774. |
[6] |
YI Min-na1, 2, 3, CAO Hui-min1, 2, 3*, LI Shuang-na-si1, 2, 3, ZHANG Zhu-shan-ying1, 2, 3, ZHU Chun-nan1, 2, 3. A Novel Dual Emission Carbon Point Ratio Fluorescent Probe for Rapid Detection of Lead Ions[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3788-3793. |
[7] |
LU Wen-jing, FANG Ya-ping, LIN Tai-feng, WANG Hui-qin, ZHENG Da-wei, ZHANG Ping*. Rapid Identification of the Raman Phenotypes of Breast Cancer Cell
Derived Exosomes and the Relationship With Maternal Cells[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3840-3846. |
[8] |
LIU Bo-yang1, GAO An-ping1*, YANG Jian1, GAO Yong-liang1, BAI Peng1, Teri-gele1, MA Li-jun1, ZHAO San-jun1, LI Xue-jing1, ZHANG Hui-ping1, KANG Jun-wei1, LI Hui1, WANG Hui1, YANG Si2, LI Chen-xi2, LIU Rong2. Research on Non-Targeted Abnormal Milk Identification Method Based on Mid-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3009-3014. |
[9] |
MU Da1, 2, WANG Qi-shu1, 2*, CUI Zong-yu1, 2, REN Jiao-jiao1, 2, ZHANG Dan-dan1, 2, LI Li-juan1, 2, XIN Yin-jie1, 2, ZHOU Tong-yu3. Study on Interference Phenomenon in Terahertz Time Domain
Spectroscopy Nondestructive Testing of Glass Fiber Composites[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3031-3040. |
[10] |
TAO Bei-bei, WU Ning-ning, WANG Hai-bo*. Highly Sensitive Determination of Rutin Based on Fluorescent Glutathione Stabilized Copper Nanoclusters[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3158-3162. |
[11] |
XUE Fang-jia, YU Jie*, YIN Hang, XIA Qi-yu, SHI Jie-gen, HOU Di-bo, HUANG Ping-jie, ZHANG Guang-xin. A Time Series Double Threshold Method for Pollution Events Detection in Drinking Water Using Three-Dimensional Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3081-3088. |
[12] |
GUO Ge1, 3, 4, ZHANG Meng-ling3, 4, GONG Zhi-jie3, 4, ZHANG Shi-zhuang3, 4, WANG Xiao-yu2, 5, 6*, ZHOU Zhong-hua1*, YANG Yu2, 5, 6, XIE Guang-hui3, 4. Construction of Biomass Ash Content Model Based on Near-Infrared
Spectroscopy and Complex Sample Set Partitioning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3143-3149. |
[13] |
ZHAO Ling-yi1, 2, YANG Xi3, WEI Yi4, YANG Rui-qin1, 2*, ZHAO Qian4, ZHANG Hong-wen4, CAI Wei-ping4. SERS Detection and Efficient Identification of Heroin and Its Metabolites Based on Au/SiO2 Composite Nanosphere Array[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3150-3157. |
[14] |
HUANG Bao-kun1*, ZHAO Qian-nan2, LIU Ye-fan2, ZHU Lin1, ZHANG Hong2, ZHANG Yun-hong3*, LIU Yan4*. In Situ Detection of Fuel Engine Exhaust Components by Raman
Integrating Sphere[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3310-3313. |
[15] |
ZHANG Peng1, 3, YANG Yi-fan1, WANG Hui1, TU Zong-cai1, 2, SHA Xiao-mei2, HU Yue-ming1*. A Review of Structural Characterization and Detection Methods of Glycated Proteins in Food Systems[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2667-2673. |
|
|
|
|