|
|
|
|
|
|
Evaluations of Environmental Trace Gases Monitoring Instrument (EMI) Level 1 Data |
CHENG Liang-xiao1, 2, TAO Jin-hua1*, ZHOU Hai-jin3, YU Chao1, FAN Meng1, WANG Ya-peng4, WANG Zhi-bao5, CHEN Liang-fu1 |
1. State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing Normal University, Beijing 100101, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
4. National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China
5. School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China |
|
|
Abstract The Environmental trace gases Monitoring Instrument (EMI) is the first high spectral resolution imaging spectrometer in China designed to monitor trace gas in tropospheric and stratospheric. To fully understand the instrument’s characteristics and make better use of the level 1 (L1) data, comprehensive evaluations of irradiance and radiance data measured by the EMI instrument were carried out in this study. For both ultraviolet-2 and visible-1 bands,the slit function change drastically as a function of detectors in the across-track direction of charge-coupled device (CCD), which is more than 6 times larger than that of TROP(OMI). The use of different slit functions according to the row can improve the calibration accuracy. Small wavelength shifts were found in both irradiance and radiance data with an average value of 0.015 and 0.03 nm, respectively. Although they meet the requirement of the design specification (0.05 nm), wavelength calibration is still needed during the trace gas retrieval. EMI irradiance data agree highly (r>0.95) with OMI and TROPOMI and the reference solar spectrum. EMI radiance data also shows a better agreement (r>0.93) with OMI and TROPOMI by averaging the cloud-free pixels over the clean Pacific region. This study demonstrates the good quality of current EMI L1 data for trace gas retrieval, and it provides a reference for the design and data quality evaluation scheme of subsequent instruments.
|
Received: 2020-11-17
Accepted: 2021-02-21
|
|
Corresponding Authors:
TAO Jin-hua
E-mail: taojh@radi.ac.cn
|
|
[1] Zhang C X, Liu C, Wang Y, et al. IEEE T Geosci Remote, 2018, 56(6): 3323.
[2] Zhao M J, Si F Q, Zhou H J, et al. Atmos. Meas. Tech., 2018, 11(9): 5403.
[3] Munro R, Lang R, Klaes D, et al. Atmos. Meas. Tech., 2016, 9(3): 1279.
[4] Levelt P F, van den Oord G H J, Dobber M R, et al. IEEE T Geosci Remote, 2006, 44(5): 1093.
[5] Veefkind J P, Aben I, Mcmullan K, et al. Remote Sens Environ, 2012, 120: 70.
[6] Zara M, Boersma K F, de Smedt I, et al. Atmos. Meas. Tech., 2018, 11(7): 4033.
[7] Dobber M, Kleipool Q, Dirksen R, et al. J. Geophys. Res-Atmos., 2008, 113(D15): D15S06.
[8] Schenkeveld V M E, Jaross G, Marchenko S, et al. Atmos. Meas. Tech., 2017, 10(5): 1957.
[9] Boersma K F, Eskes H J, Dirksen R J, et al. Atmos. Meas. Tech., 2011, 4(9): 1905.
[10] Marchenko S, Krotkov N A, Lamsal L N, et al. J. Geophys. Res-Atmos., 2015, 120(11): 5670.
[11] Voors R, Dobber M, Dirksen R, et al. Appl. Optics, 2006, 45(15): 3652.
[12] Theys N, de Smedt I, Yu H, et al. Atmos. Meas. Tech., 2017, 10(1): 119.
[13] de Smedt I, Theys N, Yu H, et al. Atmos. Meas. Tech., 2018, 11(4): 2395.
[14] Boersma K F, Eskes H J, Richter A, et al. Atmos. Meas. Tech., 2018, 11(12): 6651.
[15] Griffin D, Zhao X, McLinden C A, et al. Geophys. Res. Lett., 2019, 46(2): 1049.
[16] Chance K, Kurucz R L. J. Quant. Spectrosc. Ra. Trans., 2010, 111(9): 1289.
[17] Cheng L X, Tao J H, Valks P, et al. Remote Sens-Basel, 2019, 11(24): 3017.
[18] Zhang X Y, Wang F, Wang W H, et al. Atmos. Res., 2020, 245: 105056. |
[1] |
QIAN Rui1, XU Wei-heng2, 3 , 4*, HUANG Shao-dong2, WANG Lei-guang2, 3, 4, LU Ning2, OU Guang-long1. Tea Plantations Extraction Based on GF-5 Hyperspectral Remote Sensing
Imagery in the Mountainous Area[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3591-3598. |
[2] |
CUI Zhen-zhen1, 2, MA Chao1, ZHANG Hao2*, ZHANG Hong-wei3, LIANG Hu-jun3, QIU Wen2. Absolute Radiometric Calibration of Aerial Multispectral Camera Based on Multi-Scale Tarps[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3571-3581. |
[3] |
TANG Xiao-xiao1, 2, LI Jian-yu1, 3, 4*, XU Gang1, 3, 4, SUN Feng-ying1, 3, 4, DAI Cong-ming1, 3, 4, WEI He-li1, 3, 4. Mixing Calibration Method for Spectral Sun-Photometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2536-2542. |
[4] |
DU Guo-jun, ZHANG Yu-gui, CUI Bo-lun, JIANG Cheng, OU Zong-yao. Spectral Calibration of Hyperspectral Monitor (HSM) on Carbonsat[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1556-1562. |
[5] |
WANG Jian-wei1, 2, LI Wei-yan1, SUN Jian-ying1, LI Bing1, CHEN Xin-wen1, TAN Zheng1, ZHAO Na1, LIU Yang-yang1, 3, LÜ Qun-bo1, 3*. Fast Spectral Calibration Method of Spectral Imager[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2013-2017. |
[6] |
LIU Li-xi, CHEN Lin, CHEN Zhi-li*, TANG Jin, PENG Wu-di, HU Tian-you, WANG Hao-wen. Research on the Radiation Characteristics of Low-Carbon Chemical Flame Infrared Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 62-67. |
[7] |
LUO Wei, TIAN Peng, DONG Wen-tao, HUANG Yi-feng, LIU Xue-mei, ZHAN Bai-shao, ZHANG Hai-liang*. Detection of Pb Contents in Soil Using LIBS Coupled With Univariate Calibration Curve Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 886-891. |
[8] |
LIU Jia-qing1, 2, LI Zhi-zeng1, 4, LI Jing3*, LIU Lei1, 4, LIU Lei1, GUO Hong-long1, WANG Jian-guo1. Phase Characterizing and Processing in Fourier Transform Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3328-3335. |
[9] |
PEI Guo-chao1, 2, LI Yuan3, 4*, BAI Ting-zhu1, 2. Temporal Variation Model of Ultraviolet Hyperspectral Solar Reference Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(08): 2332-2338. |
[10] |
CHEN Xing-feng1, 2, LIU Li3*, GE Shu-le3, LI Xin4, ZHANG Kai-nan2, YANG Ben-yong4. Research Progress for In-Flight Calibration of the Large View Polarized Multispectral Camera[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(02): 343-349. |
[11] |
FU Li-ping1,2, JIA Nan1, 2,3, HU Xiu-qing4*, MAO Tian4, JIANG Fang1,2, WANG Yun-gang4, PENG Ru-yi1,2, WANG Tian-fang1,2,3, WANG Da-xin3, DOU Shuang-tuan3. Research Progress on On-Orbit Calibration Technology for Far Ultraviolet Payload[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(12): 3673-3680. |
[12] |
ZHU De-hua1, 2, WANG Man-cang1, 2, XU Ling-jie1, 2, CHEN Xiao-jing3, SUN Bing-tao1, 2, ZHANG Jian1, 2, LIU Wen-wen1, 2, CAO Yu1, 2, YUAN Lei-ming3, CAI Yan1*. Detection of Pb Element Composition in Irregular Copper Alloy Samples Based on Multi-Line Internal Standard Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(10): 3159-3163. |
[13] |
HUANG Shan1, 2, SI Fu-qi1*, ZHAO Min-jie1, ZHOU Hai-jin1, JIANG Yu1. Study on the Slit Function of Atmospheric Trace Gas Differential Optical Absorption Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(07): 2008-2012. |
[14] |
SHA Wen1, 3, LI Jiang-tao1, LU Cui-ping2*, ZHEN Chun-hou3. Quantitative Analysis of P in Compound Fertilizer by Laser-Induced Breakdown Spectroscopy Coupled with Linear Multivariate Calibration[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(06): 1958-1964. |
[15] |
CAI Ting-ni1,2, LI Chun-lai1*, REN Xin1, LIU Bin1, LIU Da-wei1. Researchon the Selection of Mars Onboard Laser Induced Breakdown Spectrometer (MarsCoDe) Calibration Samples[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(05): 1623-1629. |
|
|
|
|