|
|
|
|
|
|
Research Progress for In-Flight Calibration of the Large View Polarized Multispectral Camera |
CHEN Xing-feng1, 2, LIU Li3*, GE Shu-le3, LI Xin4, ZHANG Kai-nan2, YANG Ben-yong4 |
1. State Environmental Protection Key Laboratory of Satellite Remote Sensing Applications, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
2. Finnish Meteorological Institute, Helsinki 00101, Finland
3. China Centre for Resources Satellite Data and Application, Beijing 100094, China
4. Key Laboratory of Optical Calibration and Characterization, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China |
|
|
Abstract The large view, polarized and multispectral camera detects the angular and polarized two more dimensional information than a traditional optical multi-spectral camera, and has great advances especially in aerosol remote sensing. So, near the year of 2020, a number of satellites loading multi-angle and polarized camera would be launched in different countries. As a high quantitative sensor, its in-flight calibration has always been attractive. Due to the lack of onboard calibration instrument and the low spatial resolution, the natural scenery targets are selected to be vicarious optic references for the calibration. Multi-angel polarized camera has several parameters to be calibrated. The radiometric calibration of polarized camera includes intensity and polarization parameters. Different calibration parameters are calibrated using many natural targets by many methods which are developed in parallel. The Gaofen-5 launched in 2018 is the first satellite loading polarized sensor of China, also the only operational satellite in the world this time. In view of many new polarized camera aerospace plans in European and American countries and China, the vicarious calibration for polarized camera is necessary to overview. In this paper, the optical structure and the spectral settings of the large view, polarized and multispectral camera are presented. The optical transfer model of camera is introduced. The in-flight calibration theory and method of each camera parameter is classified into three categories including absolute radiometric intensity, relative radiometric intensity and polarization. For a specified calibration coefficient, the natural target and calibration flow are introduced for the in-flight calibration. The method system is formed for the in-flight radiometric calibration of the large view, polarized and multispectral camera. Also, the general validation methods of calibration are concluded. The in-flight calibration of the new large view, polarized and multispectral camera will inherit the original research and use special natural scenery to carry out calibration. In the same kind of future remote sensing camera, new style in-flight radiometric calibration will be based on the instruments and its calibrator onboard the same satellite platform, ground-based artificial optical source and others. China, Europe and America have planned some future polarized camera, jointly considering the research basis of authors, preliminary design and prospects for the future on-orbit calibration method are given. A polarized multispectral camera mainly serves the remote sensing monitoring of atmospheric particulate matter, which is very important for the atmospheric environment problems currently concerned in China. A continuous in-flight calibration can ensure the accuracy of satellite remote sensing retrieved products. This overview of in-flight calibration research and the preliminary design for the future calibration method will provide method and model references for the remote sensing application system of the planned satellite.
|
Received: 2018-12-05
Accepted: 2019-03-19
|
|
Corresponding Authors:
LIU Li
E-mail: liulicugb@126.com
|
|
[1] GU Xing-fa, CHEN Xing-feng, CHENG Tian-hai, et al(顾行发,陈兴峰,程天海,等). Acta Physica Sinica(物理学报), 2011, 60(7): 070702.
[2] CHEN Hong-bin, FAN Xue-hua, HAN Zhi-gang(陈洪滨,范学花,韩志刚). Remote Sensing Technology and Application(遥感技术与应用), 2006, 21(2): 83.
[3] CHEN Li-gang, MENG Fan-gang, YUAN Yin-lin, et al(陈立刚,孟凡刚,袁银麟,等). Journal of Atmospheric and Environmental Optics(大气与环境光学学报),2010,5(3):227.
[4] LUO Rui-zhi, QIAO Yan-li, HAO Pei-ming, et al(罗睿智,乔延利,郝沛明,等). Chinese Journal of Quantum Electronics(量子电子学报), 2004, 21(3): 396.
[5] QIAN Hong-hu, MENG Bing-huan, YUAN Yin-lin, et al(钱鸿鹄,孟炳寰,袁银麟,等). Acta Physica Sinica(物理学报), 2017, 66(10): 100701.
[6] CHEN Li-gang, HONG Jin, QIAO Yan-li, et al(陈立刚,洪 津,乔延利,等). Opto-Electronic Engineering(光电工程),2007,34(9):66.
[7] Cheng T H, Gu X F, Xie D H, et al. Remote Sensing of Environment, 2011, 115(7): 1643.
[8] XIE Dong-hai, GU Xing-fa, CHENG Tian-hai, et al(谢东海,顾行发,程天海,等). Acta Physica Sinica(物理学报), 2012, 61(7): 452.
[9] Xie D H, Gu X F, Cheng T H, et al. Science China Earth Sciences, 2011, 54(8): 1199.
[10] LI Zheng-qiang, XU Hua, QIE Li-li, et al(李正强,许 华,伽丽丽,等). China Patent(中国专利), 104316440, 2016.
[11] Marbach T, Phillips P, Lacan A, et al. Proceedings of SPIE, 2013, 8889: 88890I.
[12] Liu Y, David J D. Public Health Reports, 2017, 132(1): 14.
[13] Gu X, Tian G, Li X, et al. Science in China Series E Engineering & Materials Science, 2005, 48(S1): 1.
[14] Gong P. Journal of Remote Sensing, 2009, 13(1): 16.
[15] JIN Hui, JIANG Hui-lin, ZHENG Yu-quan, et al(金 辉,姜会林,郑玉权,等). Chinese Journal of Luminescence(发光学报), 2013, 34(2): 235.
[16] CHEN Xing-feng, GU Xing-fa, GE Hui-bin, et al(陈兴峰,顾行发,葛慧斌,等). Remote Sensing for Land & Resources(国土资源遥感), 2011,(1): 21.
[17] Deschamps P Y, Bréon F M, Leroy M, et al. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(3): 598.
[18] Leroy M, Deuzé J L, Bréon F M, et al. Journal of Geophysical Research Atmospheres, 1997, 102(D14): 17023.
[19] Bret-Dibat T, André Y, Laherrère J M et al. Proceedings of SPIE, 1995, 2553: 218.
[20] YANG Bin, YAN Chang-xiang, ZHANG Jun-qiang, et al(杨 斌,颜昌翔,张军强,等). Optics and Precision Engineering(光学精密工程), 2017, 25(5): 1126.
[21] Goloub P, Toubbe B, Herman M, et al. Proceedings of SPIE, 1996, 2957: 299.
[22] Xiong X, Sun J, Xie X, et al. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 535.
[23] Peralta R J, Nardell C, Cairns B, et al. Proceedings of SPIE, 2007, 6786: 67865L.
[24] YANG Hong-chun, YANG Ben-yong, SONG Mao-xin, et al(杨洪春,杨本永,宋茂新,等). Chinese Journal of Lasers(中国激光), 2018, 45(11): 1110002.
[25] WANG Min, ZHOU Shu-dao, HE Ming-yuan, et al(王 敏,周树道,何明元,等). Geomatics & Spatical Information Technology(测绘与空间地理信息), 2015,38(7): 24.
[26] YANG Wei-feng, HONG Jin, QIAO Yan-li(杨伟锋,洪 津,乔延利). Acta Optica Sinica(光学学报), 2015, 35(8): 275.
[27] LIU Li, FU Qiao-yan, PAN Zhi-qiang, et al(刘 李,傅俏燕,潘志强,等). Spacecraft Recovery & Remote Sensing(航天返回与遥感), 2016, 37(1): 89.
[28] HAN Qi-jin, FU Qiao-yan, ZHANG Xue-wen, et al(韩启金,傅俏燕,张学文,等). Optics and Precision Engineering(光学精密工程), 2014, 22(7): 1707.
[29] GONG Hui, TIAN Guo-liang, YU Tao, et al(巩 慧,田国良,余 涛,等). Remote Sensing Technology and Application(遥感技术与应用), 2011, 26(5): 682.
[30] ZHAO Wei, CHEN Guang-ming, NIU Sheng-li(赵 崴,陈光明,牛生丽). Acta Oceanologica Sinica(海洋学报), 2013, 35(2): 52.
[31] Hagolle O, Nicolas J M, Fougnie B, et al. IEEE Transactions on Geoscience & Remote Sensing, 2004, 42(7): 1472.
[32] Hagolle O, Goloub P, Deschamps P Y, et al. IEEE Transaction on Geoscience and Remote Sensing, 1999, 37(3): 1550.
[33] Frouin R. IOCCG Calibration Report, 2013.
[34] Fraser R S, Kaufman Y J. Applied Optics, 1986, 25: 1177.
[35] Vermote E, Santer R, Deschamps P Y, et al. International Journal of Remote Sensing, 1992, 13(18): 3409.
[36] Bruniquel V, Fontanilles G, Bourg L, et al. Absolute Calibration of Seawifs Using Rayleigh Scattering. International Ocean Colour Science Meeting, 2013: 43.
[37] Fougnie B, Bracco G, Lafrance B, et al. Applied Optics, 2007, 46(22): 5435.
[38] Chen X, Xing J, Liu L, et al. Remote Sensing, 2017, 9: 513.
[39] Xue Y, Wen C, Yang X, et al. Climate Dynamics, 2017, 49(3): 843.
[40] Fougnie B, Lachérade S, Henry P, et al. MODIS-Aqua Calibration as Seen by Alternative Statistical Methods over Natural Tragets, Conference on Characterization and Radiometric Calibration for Remote Sensing Logan, 2013. 11.
[41] Su W, Charlock T P, Rutledge K. Applied Optics, 2002, 41(35): 7369.
[42] Cox C, Munk W. Journal of Marine Research, 1954, 13(2): 198.
[43] Cox C, Munk W. Journal of the Optical Society of America, 1954, 44(11): 838.
[44] Lafrance B, Hagolle O, Bonnel B, et al. IEEE Transactions on Geoscience & Remote Sensing, 2002, 40(1): 131.
[45] Fougnie B, Bach R. IEEE Transactions on Geoscience & Remote Sensing, 2009, 47(3): 851.
[46] Bouffies S, Bréon F M, Tanré D, et al. Journal of Geophysical Research: Atmospheres, 1997, 102(D3): 3831.
[47] Cosnefroy H, Briottet X, Leroy M, et al. International Journal of Remote Sensing, 1997, 18(16): 3337.
[48] YIN De-kui(殷德奎). Infrared(红外),2019,41(1):1.
[49] Li Z, Hou W, Hong J, et al. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 218: 21.
[50] Marbach T, Riedi J, Lacan A, et al. Proc SPIE, 2015, 9613: 961310.
[51] JIANG Xing-wei, LIN Ming-sen, ZHANG You-guang, et al(蒋兴伟,林明森,张有广,等). Satellite Application(卫星应用), 2018, (5): 10.
[52] GAO Fei, ZHU Jian-hua, YANG An-an, et al(高 飞,朱建华,杨安安,等). Acta Optica Sinica(光学学报), 2013 33(s1): s101002.
[53] YAN Lei, GU Xing-fa, CHU Jun-hao, et al(晏 磊,顾行发,褚君浩,等). Journal of Remote Sensing(遥感学报), 2018, 22(6): 901. |
[1] |
FU Xiao-man1, 2, BAO Yu-long1, 2*, Bayaer Tubuxin1, 2, JIN Eerdemutu1, 2, BAO Yu-hai1, 2. Spectral Characteristics Analysis of Desert Steppe Vegetation Based on Field Online Multi-Angle Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3170-3179. |
[2] |
FU Li-ping1,2, JIA Nan1, 2,3, HU Xiu-qing4*, MAO Tian4, JIANG Fang1,2, WANG Yun-gang4, PENG Ru-yi1,2, WANG Tian-fang1,2,3, WANG Da-xin3, DOU Shuang-tuan3. Research Progress on On-Orbit Calibration Technology for Far Ultraviolet Payload[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(12): 3673-3680. |
[3] |
CAI Ting-ni1,2, LI Chun-lai1*, REN Xin1, LIU Bin1, LIU Da-wei1. Researchon the Selection of Mars Onboard Laser Induced Breakdown Spectrometer (MarsCoDe) Calibration Samples[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(05): 1623-1629. |
[4] |
ZHAO Wei-ning1, 2, FANG Wei2, JIANG Ming2, LUO Yang2, WANG Yu-peng2* . Overview of the Study for Transfer Radiometer with Spectral Standard Calibration and Transferring Technology [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(09): 2984-2990. |
[5] |
LIU Yi1,2, YIN Da-yi1 . Study on In-Orbit VIS/SWIR Relative Calibration Monitoring System with High Stability [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(04): 927-931. |
[6] |
SUN Ling1, 2, GUO Mao-hua3, XU Na1, 2, ZHANG Li-jun1, 2, LIU Jing-jing1, 2, HU Xiu-qing1, 2, LI Yuan1, 2, RONG Zhi-guo1, 2, ZHAO Ze-hui4. On-Orbit Response Variation Analysis of FY-3 MERSI Reflective Solar Bands Based on Dunhuang Site Calibration [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32(07): 1869-1877. |
|
|
|
|