光谱学与光谱分析 |
|
|
|
|
|
Overview of the Study for Transfer Radiometer with Spectral Standard Calibration and Transferring Technology |
ZHAO Wei-ning1, 2, FANG Wei2, JIANG Ming2, LUO Yang2, WANG Yu-peng2* |
1. University of Chinese Academy of Sciences, Beijing 100049, China 2. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China |
|
|
Abstract Transfer radiometer is the critical calibration facility of remote sensing instruments on satellites to achieve spectral radiometric calibration on-orbit. It’s also the core for spectral calibration with high accuracy in the laboratory on earth. This paper compares the similarities and differences between several transfer radiometers developed by various institutes covering 200~700, 700~2 000 nm spectrum bandwidth separately through describing their construction, design and operational principles and the method of transferring radiometric calibration benchmark. It shows the realizable accuracy of every transfer radiometers by introducing their central technology applied in the calibration procedures of different wavelength range. The advantages and shortcomings together with every transfer radiometer determine the application circumstance. According to the Introduction of the process of the calibration traceability based on radiance standard in international institutes of standard technology,it emphasizes the importance of transfer radiometers in the procedure. It demonstrates the significance of transfer radiometer in radiometric calibration of aeronautics and space through its application of monitoring the calibration light source for spectrometers. Finally, it presents the prospect for the development and crucial issues of transfer radiometer’s technology in the future research through describing the new transfer radiometer designed in internal institute. Simultaneously, it predicts and summarizes difficult problems required to be solved in the future as to high-accuracy calibration transferring system on-orbit against SI-traceable primary standard, which consists of cryogenic radiometers and transfer radiometers.
|
Received: 2015-04-28
Accepted: 2015-08-06
|
|
Corresponding Authors:
WANG Yu-peng
E-mail: wangyp@ciomp.ac.cn
|
|
[1] Spyak P R, Smith D S, Thiry J, et al. Applied Optics, 2000, 39:31. [2] Johnson B C, Sakuma F, Butler J J, et al. J. Res. NIST, 1997, 102: 627. [3] Meister G P, et al. 2002 The First SIMBIOS Radiometric Inter Comparison (SIMRIC-1) NASA Technical Memorandum 210006, NASA Goddard Space Flight Center, Greenbelt, MD 60. [4] James J Butler,Robert A Barnes. Metrologia, 2003, 40(2003): S70. [5] Johnson B C, Fowler J B, Cromer C L, 1998: The SeaWiFS Transfer Radiometer(SXR). NASA Tech. Memo. 1998-206892, Vol.1, NASA Goddard Space Flight Center, Greenbelt, Md. [6] Walker J H, Saunders R D, Hattenburg A T, 1987, Spectral Radiance Calibrations. Special Publication SP 250-1, National Bureau of Standards, Washington, DC, USA. [7] Larason T C, Bruce S B, Cromer C L. J. Res. Natl. Inst. Stan., 1996 101(02): 133. [8] Brown S W, Eppeldauer G P, Lykke K R, et al. Applied Optics, 2006, 45(32): . [9] Thome Kurtis J, Keef James L. Journal of Apllied Remote Sensing, 2009, 3: 1. [10] Stuart F, Kurtis J Thome, Ronald B Lockwood, et al. 2007, Proc. of SPIE Vol.6677, 66770W, doi: 10.1117/12.740231. [11] Nik Anderson, Kurt Thome, Stuart Biggar, et al. 2008, Proc. of SPIE Vol.7081, 708104, doi: 10.1117/12.795478. [12] Keef James L. Dissertation Abstracts International, Supple B, 2008, 69:3. [13] Taubert E D, Monte C, Gutschwager B, et al. 2009, Proc. of SPIE, Vol. 7474, 747413, doi:10.1117/12.830082. [14] Spereld P, Pape S, Nevas S, 2013, AIP Conf. Proce. 1531, 801(2013), doi:10.1063/1.4804891. [15] Michael Jehle, Andreas Hueni, Karim Lenhard, et al. IEEE Geosci Remote S, 2015, 12: 5. [16] Michael E Schaepman, Michael Jehle, et al. Remote Sens. Environ., 2015, 158: 207. [17] Peter Gege, Jochen Fries, Peter Haschberger, et al. ISPRS J. Photogramm, 2009, 64: 387. [18] Taubert D R, Hollandt J, Sperfeld P, et al. API Conf. Proc., 2013, 1531, 376(2013), doi:10.1063/1.4804785. [19] Gege P, Fries J, Haschberger P, et al. 2010, Proc. Hyperspectral Workshop, ESRIN, Frascati, Italy. [20] Schwarzmaier T, Baumgartner A, Gege P, et al. 2013, Proc. of SPIE Vol.8533, 85331U, doi:10.1117/12.974599. [21] Leibo Ding, Matthew G Kowalewski, et al. Optical Engineering, 2011, 50(11): 113603. [22] Belyaev Yu V, Rogovets A V, Khomitsevich A D, et al. Journal of Applied Spectroscopy, 2010, 77: 5. [23] Timothy M Jung, Adriaan C Carter, Solomon I, et al. 2011, Proc. of SPIE, 8015, 80150C-1, doi:10.1117/12.883415. [24] Liu Enchao, Zheng Xiaobing, Li Xin, et al. Optical and Precision Engineering, 2013, 21(03): 0608. [25] Cao Haixia, Wu Na, Feng Shulong, et al. Optical and Precision Engineering, 2014, 22(10): 2585. [26] ZHOU Guan-hua, JIANG He, ZHAO Hui-jie, et al(周冠华,姜 禾,赵慧洁,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2012, 32(12): 3416. |
[1] |
LI Jie, ZHOU Qu*, JIA Lu-fen, CUI Xiao-sen. Comparative Study on Detection Methods of Furfural in Transformer Oil Based on IR and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 125-133. |
[2] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
[3] |
LEI Hong-jun1, YANG Guang1, PAN Hong-wei1*, WANG Yi-fei1, YI Jun2, WANG Ke-ke2, WANG Guo-hao2, TONG Wen-bin1, SHI Li-li1. Influence of Hydrochemical Ions on Three-Dimensional Fluorescence
Spectrum of Dissolved Organic Matter in the Water Environment
and the Proposed Classification Pretreatment Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 134-140. |
[4] |
LI Yu1, ZHANG Ke-can1, PENG Li-juan2*, ZHU Zheng-liang1, HE Liang1*. Simultaneous Detection of Glucose and Xylose in Tobacco by Using Partial Least Squares Assisted UV-Vis Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 103-110. |
[5] |
WANG Xin-qiang1, 3, CHU Pei-zhu1, 3, XIONG Wei2, 4, YE Song1, 3, GAN Yong-ying1, 3, ZHANG Wen-tao1, 3, LI Shu1, 3, WANG Fang-yuan1, 3*. Study on Monomer Simulation of Cellulose Raman Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 164-168. |
[6] |
LIANG Ye-heng1, DENG Ru-ru1, 2*, LIANG Yu-jie1, LIU Yong-ming3, WU Yi4, YUAN Yu-heng5, AI Xian-jun6. Spectral Characteristics of Sediment Reflectance Under the Background of Heavy Metal Polluted Water and Analysis of Its Contribution to
Water-Leaving Reflectance[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 111-117. |
[7] |
LIU Jia1, 2, GUO Fei-fei2, YU Lei2, CUI Fei-peng2, ZHAO Ying2, HAN Bing2, SHEN Xue-jing1, 2, WANG Hai-zhou1, 2*. Quantitative Characterization of Components in Neodymium Iron Boron Permanent Magnets by Laser Induced Breakdown Spectroscopy (LIBS)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 141-147. |
[8] |
XIA Ming-ming1, 2, LIU Jia3, WU Meng1, 2, FAN Jian-bo1, 2, LIU Xiao-li1, 2, CHEN Ling1, 2, MA Xin-ling1, 2, LI Zhong-pei1, 2, LIU Ming1, 2*. Three Dimensional Fluorescence Characteristics of Soluble Organic Matter From Different Straw Decomposition Products Treated With Calcium Containing Additives[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 118-124. |
[9] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[10] |
LAN Yan1,WANG Wu1,XU Wen2,CHAI Qin-qin1*,LI Yu-rong1,ZHANG Xun2. Discrimination of Planting and Tissue-Cultured Anoectochilus Roxburghii Based on SMOTE and Inception-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 158-163. |
[11] |
HE Qing-yuan1, 2, REN Yi1, 2, LIU Jing-hua1, 2, LIU Li1, 2, YANG Hao1, 2, LI Zheng-peng1, 2, ZHAN Qiu-wen1, 2*. Study on Rapid Determination of Qualities of Alfalfa Hay Based on NIRS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3753-3757. |
[12] |
SONG Yi-ming1, 2, SHEN Jian1, 2, LIU Chuan-yang1, 2, XIONG Qiu-ran1, 2, CHENG Cheng1, 2, CHAI Yi-di2, WANG Shi-feng2,WU Jing1, 2*. Fluorescence Quantum Yield and Fluorescence Lifetime of Indole, 3-Methylindole and L-Tryptophan[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3758-3762. |
[13] |
LI Wei1, TAN Feng2*, ZHANG Wei1, GAO Lu-si3, LI Jin-shan4. Application of Improved Random Frog Algorithm in Fast Identification of Soybean Varieties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3763-3769. |
[14] |
WANG Zhi-qiang1, CHENG Yan-xin1, ZHANG Rui-ting1, MA Lin1, GAO Peng1, LIN Ke1, 2*. Rapid Detection and Analysis of Chinese Liquor Quality by Raman
Spectroscopy Combined With Fluorescence Background[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3770-3774. |
[15] |
YI Min-na1, 2, 3, CAO Hui-min1, 2, 3*, LI Shuang-na-si1, 2, 3, ZHANG Zhu-shan-ying1, 2, 3, ZHU Chun-nan1, 2, 3. A Novel Dual Emission Carbon Point Ratio Fluorescent Probe for Rapid Detection of Lead Ions[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3788-3793. |
|
|
|
|