|
|
|
|
|
|
Study on Multi-Wavelength Transmission Spectral Feature Extraction Combined With Support Vector Machine for Bacteria Identification |
FENG Chun1, 2, 3, ZHAO Nan-jing1, 3*, YIN Gao-fang1, 3*, GAN Ting-ting1, 3, CHEN Xiao-wei1, 2, 3, CHEN Min1, 2, 3, HUA Hui1, 2, 3, DUAN Jing-bo1, 3, LIU Jian-guo1, 3 |
1. Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
2. University of Science and Technology of China, Hefei 230026, China
3. Key Laboratory of Optical Monitoring Technology for Environment, Anhui Province, Hefei 230031, China |
|
|
Abstract The realization of rapid identification of pathogenic bacteria has important practical significance for preventing large-scale disease outbreaks caused by microbial pollution in water bodies. Conventional bacterial detection methods such as biochemical identification and nucleic acid detection have the characteristics of time-consuming and precise experimental equipment, which are insufficient for the rapid and real-time online monitoring of bacteria. Since the multi-wavelength transmission spectrum of bacteria contains abundant characteristic information, and this spectral detection technology has the advantages of fast, simple, non-contact, and non-polluting, it has become a hot spot in bacterial detection research in recent years. This article takes Klebsiella pneumoniae, Staphylococcus aureus, Salmonella typhimurium, Pseudomonas aeruginosa and Escherichia coli as research objects. The characteristic wavelength range with the most significant spectral change is obtained by normalization and the analysis of variance method, and the characteristic spectral values such as the absorbance value at 200nm and the slope value of the short waveband are extracted from this range, and the support vector machine is used to predict different types of bacteria. The results show that the normalization of the multi-wavelength transmission spectrum can effectively eliminate the concentration effect and retain the complete original spectral information. The characteristic wavelength range of 200~300 nm is obtained by analysis of variance. The characteristic values of the normalized spectral trend graphs of the five bacteria extracted in this interval are: The absorbance values at 200 nm are 0.006 5, 0.005 1, 0.007 5, 0.007 5, and 0.008 5. The slope values at the 200~245 nm band are -62.45, -35.94, -81.30, -82.67, and -103.49, and the slope values at the 250~275 nm band are -15.48, -14.82, -20.91, -13.92 and -26.21, the slope values at the 280~300 nm band are -29.96, -24.62, -33.71, -36.09 and -30.88, respectively. Feature values were extracted from the samples and randomly divided into a training sets and test sets. The penalty factor model and the linear kernel function were selected for SVM, the best penalty factor parameter c and kernel function parameter g were determined through the optimization algorithm. The prediction accuracy rates of the five species of bacteria all reach 100.0%. In summary, theobvious spectral characteristic values of the multi-wavelength transmission spectrum of bacteriacan be extracted through proper data preprocessing. The spectral feature value combined with the support vector machine can be effectively used for the identification of different bacterial species. This method provides important technical support for rapid identification and real-time online monitoring of water bacteria.
|
Received: 2020-09-10
Accepted: 2021-01-16
|
|
Corresponding Authors:
ZHAO Nan-jing, YIN Gao-fang
E-mail: njzhao@aiofm.ac.cn; gfyin@aiofm.ac.cn
|
|
[1] Alupoaei C E, Olivares J A, Garcia-Rubio L H, et al. Biosensors and Bioelectronics, 2003, 19(8): 893.
[2] HU Yu-xia, ZHAO Nan-jing, GAN Ting-ting, et al(胡玉霞,赵南京,甘婷婷,等). China Laser(中国激光), 2018, 45(2): 274.
[3] Alupoaei C E, Garcia-Rubio L H. Biotechnology and Bioengineering,2004, 86: 163.
[4] Smith J M, Huffman D E, Acosta D, et al. Journal of Biomedical Optics, 2012, 17(10): 1.
[5] Huffman D E, Serebrennikova Y M, Smith J M, et al. Journal of Spectroscopy, 2016, 2016: 5436821(http://dx.doi.org/10.1155/2016/5368821).
[6] GAO Bin, ZHAO Peng-fei, LU Yu-xin, et al(高 斌,赵鹏飞,卢昱欣,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2018, 38(10): 3136.
[7] GONG Peng, PU Rui-liang, YU Bin, et al(宫 鹏,浦瑞良,郁 彬,等). Journal of Remote Sensing(遥感光学), 1998,(3): 211.
[8] ZHANG Zheng-yong, SONG Chao, SHA Min, et al(张正勇,宋 超,沙 敏,等). Brewing Technology(酿酒科技), 2016,(11): 20.
[9] HU Yu-xia, GAN Ting-ting, ZHAO Nan-jing, et al(胡玉霞,甘婷婷,赵南京,等). Acta Optica Sinica(光学学报), 2018, 38(4): 362.
[10] DING Shi-fei, QI Bing-juan, TAN Hong-yan, et al(丁世飞,齐丙娟,谭红艳,等). Journal of Electronic Science and Technology(电子科技大学学报), 2011, 40(1): 2.
[11] Chang Chih-Chung,Lin Chih-Jen. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3):27.
[12] Liu Donghai, Chen Xiaohong, Peng Dan. International Journal of Intelligent Systems, 2019, 34(7). |
[1] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[2] |
CHENG Hui-zhu1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, MA Qian1, 2, ZHAO Yan-chun1, 2. Genetic Algorithm Optimized BP Neural Network for Quantitative
Analysis of Soil Heavy Metals in XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3742-3746. |
[3] |
SHEN Si-cong, ZHANG Jing-xue, CHEN Ming-hui, LI Zhi-wei, SUN Sheng-nan, YAN Xue-bing*. Estimation of Above-Ground Biomass and Chlorophyll Content of
Different Alfalfa Varieties Based on UAV Multi-Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3847-3852. |
[4] |
BAI Xue-bing1, 2, SONG Chang-ze1, ZHANG Qian-wei1, DAI Bin-xiu1, JIN Guo-jie1, 2, LIU Wen-zheng1, TAO Yong-sheng1, 2*. Rapid and Nndestructive Dagnosis Mthod for Posphate Dficiency in “Cabernet Sauvignon” Gape Laves by Vis/NIR Sectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3719-3725. |
[5] |
HUANG Zhao-di1, CHEN Zai-liang2, WANG Chen3, TIAN Peng2, ZHANG Hai-liang2, XIE Chao-yong2*, LIU Xue-mei4*. Comparing Different Multivariate Calibration Methods Analyses for Measurement of Soil Properties Using Visible and Short Wave-Near
Infrared Spectroscopy Combined With Machine Learning Algorithms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3535-3540. |
[6] |
LI Wen-wen1, 2, LONG Chang-jiang1, 2, 4*, LI Shan-jun1, 2, 3, 4, CHEN Hong1, 2, 4. Detection of Mixed Pesticide Residues of Prochloraz and Imazalil in
Citrus Epidermis by Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3052-3058. |
[7] |
LIU Fei1, TAN Jia-jin1*, XIE Gu-ai2, SU Jun3, YE Jian-ren1. Early Diagnosis of Pine Wilt Disease Based on Hyperspectral Data and Needle Resistivity[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3280-3285. |
[8] |
MA Qian1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, CHENG Hui-zhu1, 2, ZHAO Yan-chun1, 2. Research on Classification of Heavy Metal Pb in Honeysuckle Based on XRF and Transfer Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2729-2733. |
[9] |
LÜ Shi-lei1, 2, 3, WANG Hong-wei1, LI Zhen1, 2, 3*, ZHOU Xu1, ZHAO Jing1. Hyperspectral Identification Model of Cantonese Tangerine Peel Based on BWO-SVM Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2894-2901. |
[10] |
WANG Jun-jie1, YUAN Xi-ping2, 3, GAN Shu1, 2*, HU Lin1, ZHAO Hai-long1. Hyperspectral Identification Method of Typical Sedimentary Rocks in Lufeng Dinosaur Valley[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2855-2861. |
[11] |
ZHANG Hai-liang1, XIE Chao-yong1, TIAN Peng1, ZHAN Bai-shao1, CHEN Zai-liang1, LUO Wei1*, LIU Xue-mei2*. Measurement of Soil Organic Matter and Total Nitrogen Based on Visible/Near Infrared Spectroscopy and Data-Driven Machine Learning Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2226-2231. |
[12] |
LI Hao-dong1, 2, LI Ju-zi1*, CHEN Yan-lin1, HUANG Yu-jing1, Andy Hsitien Shen1*. Establishing Support Vector Machine SVM Recognition Model to Identify Jadeite Origin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2252-2257. |
[13] |
LI Bin, HAN Zhao-yang, WANG Qiu, SUN Zhao-xiang, LIU Yan-de*. Research on Bruise Level Detection of Loquat Based on Hyperspectral
Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1792-1799. |
[14] |
FENG Ying-chao1, HUANG Yi-ming2*, LIU Jin-ping1, JIA Chen-peng2, CHEN Peng1, WU Shao-jie2*, REN Xu-kai3, YU Huan-wei3. On-Line Monitoring of Laser Wire Filling Welding Process Based on Emission Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1927-1935. |
[15] |
ZHENG Zhi-jie1, LIN Zhen-heng1, 2*, XIE Hai-he2, NIE Yong-zhong3. The Method of Terahertz Spectral Classification and Identification for Engineering Plastics Based on Convolutional Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1387-1393. |
|
|
|
|