|
|
|
|
|
|
Mixed Oil Detection Based on 3D Fluorescence Spectroscopy Combined with AWRCQLD under Different Salinity Conditions |
KONG De-ming1, 3, DONG Rui1, CUI Yao-yao2*, WANG Shu-tao1 |
1. School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
2. School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
3. Department of Telecommunications and Information Processing, Ghent University, B-9000 Ghent, Belgium |
|
|
Abstract As an important fossil energy source, oil is an indispensable part of human society’s production activities. When the oil is mined and used, it could be leaked inevitably. The leaked oil will pollute the ecological environment. Therefore, it is necessary to deal with oil spills in a timely manner. Accurate identification of petroleum species is a prerequisite for handling oil spills. Petroleum contains a variety of substances with fluorescent properties. Therefore, fluorescence spectroscopy is an effective method for detecting petroleum. Due to a large number of components in the oil, the spectral information overlaps seriously, and the identification is difficult. The third-order calibration method has the “third-order advantage”. It can distinguish the data under high collinearity and high noise level. Alternating weighted residue constraint quadrilinear decomposition (AWRCQLD) algorithm is a third-order correction method. AWRCQLD algorithm has the advantages of faster convergence speed and insensitivity to component numbers. Therefore, in this paper, the three-dimensional (3D) fluorescence spectroscopy combined with AWRCQLD algorithm is used to detect the mixed oil. First, sodium dodecyl sulfate (SDS) was prepared as a solvent under three salinity conditions. Under each salinity condition, jet fuel and lube were mixed according to different concentration ratios. Thus, 24 calibration samples and 9 prediction samples are obtained. Secondly, using FLS920 fluorescence spectrometer to acquire spectral data of the experimental samples. Then, the effect of scattering was removed by using blank subtraction, and the number of components in the mixed oil is estimated by the core consistent diagnosis method. Finally, using the AWRCQLD algorithm to analysis the four-dimensional spectral matrix. The results show that, in the range of 0~20 salinity, the fluorescence intensity of jet fuel decreases first and then increases, but the fluorescence intensity of lube increases first and then decreases. The analytical spectral curves of the mixed oils are in good agreement with the actual spectral curves of the jet fuel and lube. The recovery rate of jet fuel obtained by AWRCQLD algorithm is 100.2%~109% and the root mean square error is 0.002 1 mg·mL-1; the recovery rate of lube is 91.8%~109.3% and the root mean square error is 0.004 8 mg·mL-1. By introducing the salinity of seawater as a new dimension of data, the three-dimensional spectral data array is superimposed on this dimension to obtain the four-dimensional spectral data array. In this paper, the four-dimensional spectral data matrix is analyzed by the AWRCQLD algorithm. The purpose of qualitative and quantitative analysis of mixed oil under different salinity conditions is achieved. At the same time, this paper provides a reference for detecting petroleum mixed oil under different salinity conditions.
|
Received: 2019-06-05
Accepted: 2019-10-08
|
|
Corresponding Authors:
CUI Yao-yao
E-mail: cuiyaoyao@stumail.ysu.edu.cn
|
|
[1] Cohen M A. Encyclopedia of Energy, Natural Resource, and Environmental Economics, 2013, 3: 121.
[2] Chen H, Liu S, Xu X R, et al. Marine Pollution Bulletin, 2015, 90(1-2): 181.
[3] Peiris R H, Jaklewicz M, Budman H, et al. Water Research, 2013, 47(10): 3364.
[4] ZHOU Yan-lei, ZHOU Fei-fei, JIANG Cong-cong, et al(周艳蕾,周飞飞,姜聪聪,等). Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2018, 38(2): 475.
[5] YANG Li-li, WANG Yu-tian, LU Xin-qiong(杨丽丽, 王玉田, 鲁信琼). Chinese Journal of Lasers(中国激光), 2013, 40(6): 0615002.
[6] CHEN Zhi-kun, MI Yang(陈至坤, 弭 阳). Journal of North China University of Science and Technology·Natural Science Edition(华北理工大学学报·自然科学版), 2017, 39(4): 66.
[7] WU Hai-long, LI Yong, KANG Chao, et al(吴海龙, 李 勇, 康 超, 等). Chinese Journal of Analytical Chemistry(分析化学), 2015, 43(11): 1629.
[8] Zhang X H, Wu H L, Yin X L, et al. Chemometrics and Intelligent Laboratory Systems, 2016, 155: 46.
[9] Kang C, Wu H L, Xie L X, et al. Talanta, 2014, 122: 293.
[10] Escandar G M, Olivieri A C. Analyst, 2017, 142(16): 2862.
[11] Kang C, Wu H L, Zhou C, et al. Analytica Chimica Acta, 2016, 910: 36.
[12] Qing X D, Wu H L, Yan X F, et al. Chemometrics and Intelligent Laboratory Systems, 2014, 132(1): 8.
[13] Fu H Y, Wu H L, Yu Y J, et al. Journal of Chemometrics, 2011, 25(8): 408. |
[1] |
LEI Hong-jun1, YANG Guang1, PAN Hong-wei1*, WANG Yi-fei1, YI Jun2, WANG Ke-ke2, WANG Guo-hao2, TONG Wen-bin1, SHI Li-li1. Influence of Hydrochemical Ions on Three-Dimensional Fluorescence
Spectrum of Dissolved Organic Matter in the Water Environment
and the Proposed Classification Pretreatment Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 134-140. |
[2] |
GU Yi-lu1, 2,PEI Jing-cheng1, 2*,ZHANG Yu-hui1, 2,YIN Xi-yan1, 2,YU Min-da1, 2, LAI Xiao-jing1, 2. Gemological and Spectral Characterization of Yellowish Green Apatite From Mexico[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 181-187. |
[3] |
SONG Yi-ming1, 2, SHEN Jian1, 2, LIU Chuan-yang1, 2, XIONG Qiu-ran1, 2, CHENG Cheng1, 2, CHAI Yi-di2, WANG Shi-feng2,WU Jing1, 2*. Fluorescence Quantum Yield and Fluorescence Lifetime of Indole, 3-Methylindole and L-Tryptophan[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3758-3762. |
[4] |
YANG Ke-li1, 2, PENG Jiao-yu1, 2, DONG Ya-ping1, 2*, LIU Xin1, 2, LI Wu1, 3, LIU Hai-ning1, 3. Spectroscopic Characterization of Dissolved Organic Matter Isolated From Solar Pond[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3775-3780. |
[5] |
XUE Fang-jia, YU Jie*, YIN Hang, XIA Qi-yu, SHI Jie-gen, HOU Di-bo, HUANG Ping-jie, ZHANG Guang-xin. A Time Series Double Threshold Method for Pollution Events Detection in Drinking Water Using Three-Dimensional Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3081-3088. |
[6] |
JIA Yu-ge1, YANG Ming-xing1, 2*, YOU Bo-ya1, YU Ke-ye1. Gemological and Spectroscopic Identification Characteristics of Frozen Jelly-Filled Turquoise and Its Raw Material[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2974-2982. |
[7] |
YANG Xin1, 2, XIA Min1, 2, YE Yin1, 2*, WANG Jing1, 2. Spatiotemporal Distribution Characteristics of Dissolved Organic Matter Spectrum in the Agricultural Watershed of Dianbu River[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2983-2988. |
[8] |
ZHU Yan-ping1, CUI Chuan-jin1*, CHENG Peng-fei1, 2, PAN Jin-yan1, SU Hao1, 2, ZHANG Yi1. Measurement of Oil Pollutants by Three-Dimensional Fluorescence
Spectroscopy Combined With BP Neural Network and SWATLD[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2467-2475. |
[9] |
QIU Cun-pu1, 2, TANG Xiao-xue2, WEN Xi-xian4, MA Xin-ling2, 3, XIA Ming-ming2, 3, LI Zhong-pei2, 3, WU Meng2, 3, LI Gui-long2, 3, LIU Kai2, 3, LIU Kai-li4, LIU Ming2, 3*. Effects of Calcium Salts on the Decomposition Process of Straw and the Characteristics of Three-Dimensional Excitation-Emission Matrices of the Dissolved Organic Matter in Decomposition Products[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2301-2307. |
[10] |
SHI Chuan-qi1, LI Yan2, HU Yu3, YU Shao-peng1*, JIN Liang2, CHEN Mei-ru1. Fluorescence Spectral Characteristics of Soil Dissolved Organic Matter in the River Wetland of Northern Cold Region, China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1517-1523. |
[11] |
LI Yuan-jing1, 2, CHEN Cai-yun-fei1, 2, LI Li-ping1, 2*. Spectroscopy Study of γ-Ray Irradiated Gray Akoya Pearls[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1056-1062. |
[12] |
LIU Xia-yan1, CAO Hao-xuan1, MIAO Chuang-he1, LI Li-jun2, ZHOU Hu1, LÜ Yi-zhong1*. Three-Dimensional Fluorescence Spectra of Dissolved Organic Matter in Fluvo-Aquic Soil Profile Under Long-Term Composting Treatment[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 674-684. |
[13] |
LÜ Yang1, PEI Jing-cheng1*, ZHANG Yu-yang2. Chemical Composition and Spectra Characteristics of Hydrothermal Synthetic Sapphire[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3546-3551. |
[14] |
ZHANG Yong-bin1, ZHU Dan-dan1, CHEN Ying1*, LIU Zhe1, DUAN Wei-liang1, LI Shao-hua2. Wavelength Selection Method of Algal Fluorescence Spectrum Based on Convex Point Extraction From Feature Region[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3031-3038. |
[15] |
PAN Hong-wei, TONG Wen-bin, LEI Hong-jun*, YANG Guang, SHI Li-li. Spectral Analysis of the Effect of Organic Fertilizer Application on the
Evolution of Organic Matter and Nitrogen in Farmaland[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3116-3123. |
|
|
|
|