|
|
|
|
|
|
Study on the Structural Properties and the Detection Performances of Thiacalix[4]arene-Based Micellar Self-Assembled Fluorescent Probe |
LI Yuan-yi, WANG Bo, ZHANG Ying, HU Xiao-jun*, ZHANG Zhi, HU Xin-yan |
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China |
|
|
Abstract Heavy metal pollution in water is widely concerned because it threatens the ecological environment and human health. The fluorescent probe has been a research focus in this field due to the rapid and efficient detection for heavy metals. Generally, the fluorescent probe structurally includes a receptor recognizing a desired analyte and a fluorophore generating a signal response. It gradually has formed four kinds of structures, which are intrinsic, conjugate, ensembling and template-assisted self-assembled types. In recent years, micellar self-assembled fluorescent probes based on the self-assembly of acceptor and fluorophore in surfactant micelles have attracted attentions. This is due to their simple structure, easy preparation and direct application to water environment. In this paper, the micellar self-assembled fluorescent probes for the detection of Cu2+ ions were prepared through self-assembly of surfactant micelles. The p-tert-butylthiacalix[4]arene (TCA) was used as acceptor with excellent bonding property to copper ions. And pyrene, fluoranthene, anthracene, phenanthrene, perylene were used as fluorophore. The fluorescence quantum yields of the micellar self-assembled fluorescent probes were measured by the reference method. The micelle aggregation numbers were determined by the steady-state fluorescence method. At the same time, the influences of fluorophore species and compound surfactants were investigated on detection performances of the probes for Cu2+ ions by calculating the fluorescence quenching rate. The experimental results showed that the three surfactants, which are sodium dodecyl sulfate (SDS), Triton X-100 (TX-100) and polyoxyethylene lauryl ether (Brij35), had significant effects on fluorescence quantum yields of the probes. Their fluorescence quantum yields were in the range of 0.25~0.47. And they gradually increased. These indicated that the polarities of the microenvironment inside the micelles were changed by surfactant micelles. And the influences of different types of surfactants on the microenvironment polarity were different. The enhancement of the microenvironment polarity made excited pyrene more stable. The addition of acceptor TCA had little effect on the polarity of the microenvironment in which the fluorophore was located. And it didn’t have a significant influence on the fluorescence quantum yield. However, the micellar aggregation numbers of the probe markedly decreased after the addition of TCA. They were attributed to the fact that the amphiphilic receptor TCA molecules dispersed into the surfactant molecular layer through micelle self-assembly forming co-micelle structure. Thus, the aggregation state of the surfactant molecules was changed. The fluorophore had a significant effect on the detection performance of the probe for Cu2+ ions. Under the same conditions, the fluorescence quenching rates of the probes to detect Cu2+ ions respectively using fluoranthene, anthracene and phenanthrene as fluorophores were much higher than those of pyrene and perylene. This was mainly due to the different energies released by fluorophore radiative transitions from the excited state to the ground state. And the higher the matching degree with the energy required by the acceptor TCA to recognize Cu2+ ions, the greater the fluorescence quenching rate. The compound surfactants could obviously improve the detection performance of the fluorescent probe. When the mole ratios of non-ionic/anionic and non-ionic/cationic surfactants were 7∶3 and 1∶1 respectively, the fluorescence quenching rates were maximum. And the fluorescence quenching rates of the compound surfactants both were higher than those of single surfactant. These showed that the optimal compound ratios of different types of surfactant were quite different. But they both effectively enhanced the dispersibility and self-assembled performance of receptor and fluorophore. Moreover, they improved the detection performance of the probe for Cu2+ ions. The results of the thesis will provide a reference for the design and application of novel micellar self-assembled fluorescent probes.
|
Received: 2018-03-12
Accepted: 2018-08-06
|
|
Corresponding Authors:
HU Xiao-jun
E-mail: hu-xj@mail.tsinghua.edu.cn
|
|
[1] Baban K B, Tejinder K, Ritula T, et al. Biosensors and Bioelectronics, 2017, 94: 443.
[2] Wu Weina, Mao Pandong, Wang Yuan, et al. Sensors and Actuators B, 2018, 258: 393.
[3] Nilanjan D, Santanu B. The Chemical Record, 2016, 16(4): 1934.
[4] HU Xiao-jun, ZHANG Zhi(胡晓钧, 张 智). Journal of Shenyang University (沈阳大学学报), 2015, 27(2): 87.
[5] Tiziana D G, Raimondo G, Federico P, et al. Journal of Photochemistry and Photobiology A, 2017, 345: 74.
[6] Jugun P, Chinta B R, Chebrolu P R. Coordination Chemistry Reviews, 2012, 256(23-24): 2762.
[7] Rajesh K, Yeon O L, Vandana B, et al. Chemical Society Reviews, 2014, 43(13): 4824.
[8] Hu Xiaojun, Li Congming, Song Xueying, et al. Inorganic Chemistry Communications, 2011, 14: 1632.
[9] Burilov V A, Mironova D A, Ibragimova R R, et al. Colloids and Surfaces A, 2017, 515: 41.
[10] Shinya T, Takafumi U, Satoru N, et al. The Journal of Organic Chemistry, 2015, 80(2): 1070.
[11] Gao Zhihao, Lin Zhengzhong, Chen Xiaomei, et al. Sensors and Actuators B, 2016, 222: 965.
[12] Pablo F G, Pilar B, Alfredo A, et al. Langmuir, 2016, 32(16): 3917.
[13] Yan Hui, Cui Peng, Liu Chengbu, et al. Langmuir, 2012, 28(11): 4931. |
[1] |
YI Min-na1, 2, 3, CAO Hui-min1, 2, 3*, LI Shuang-na-si1, 2, 3, ZHANG Zhu-shan-ying1, 2, 3, ZHU Chun-nan1, 2, 3. A Novel Dual Emission Carbon Point Ratio Fluorescent Probe for Rapid Detection of Lead Ions[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3788-3793. |
[2] |
HE Yan-ping, WANG Xin, LI Hao-yang, LI Dong, CHEN Jin-quan, XU Jian-hua*. Room Temperature Synthesis of Polychromatic Tunable Luminescent Carbon Dots and Its Application in Sensitive Detection of Hemoglobin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3365-3371. |
[3] |
LENG Jun-qiang, LAN Xin-yu, JIANG Wen-shuo, XIAO Jia-yue, LIU Tian-xin, LIU Zhen-bo*. Molecular Fluorescent Probe for Detection of Metal Ions[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2002-2011. |
[4] |
QIAN Duo, SU Wen-en, LIU Zhi-yuan, GAO Xiao-yu, YI Yu-xin, HU Cong-cong, LIU Bin, YANG Sheng-yuan*. Soy Protein Gold Nanocluster as an “Off-On” Fluorescent Probe for the Detection of Bacillus Anthracis Biomarkers DPA[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1815-1820. |
[5] |
ZHENG Li-zhen1, 2, CHENG Cong2, MA Wen-hua2, WANG Zhuo-rui2, HU Dao-dao2*. Online Detection of Water Forms and Moisture Volatilization Behavior in Earthen Relics Based on FE Fluorescence Probe[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 383-388. |
[6] |
LÜ Chun-qiu1, SI Lu-lu1, PAN Zhao-jin2, LIANG Yang-lin1, LIAO Xiu-fen2, CHEN Cong-jin2*. Fast and Ratiometric Detection of Dimethoate Via the Dual- Emission Center Nitrogen-Doped Carbon Quantum Dots[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 468-474. |
[7] |
ZHAI Yan-ke1, PAN Yi-xing1, XIANG Hao1, XU Li1*, ZHU Ze-ce2, LEI Mi1. Coordination Interaction of DSAZn With Quercetin and High Sensitivity Detection of Quercetin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 122-128. |
[8] |
SONG Jiang-tao, YUAN Yue-hua, ZHU Yong-jun, WANG Yu-zhen, TIAN Mao-zhong*, FENG Feng*. Research Progress of Near-Infrared Fluorescent Probes for Hydrogen Sulfide[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3321-3329. |
[9] |
XU Yi-fei, LIU Lu, SHI Shi-kao*, WANG Yue, PAN Yu-jing, MA Xing-wei. Spectroscopic Properties of Carbon Quantum Dots Prepared From Persimmon Leaves and Fluorescent Probe to Fe3+ Ions[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2418-2422. |
[10] |
WAN Xiao-ming1, 2, ZENG Wei-bin1, 2, LEI Mei1, 2, CHEN Tong-bin1, 2. Micro-Distribution of Elements and Speciation of Arsenic in the Sporangium of Pteris Vittata[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 478-482. |
[11] |
LI Meng-yao1, 2, WANG Shu-ya1, XIE Yun-feng1, LIU Yun-guo3*, ZHAI Chen1*. Detection of Protease Deterioration Factor in Tomato by Fluorescence Sensor Array[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3477-3482. |
[12] |
JIA Hui-jie, ZHU Ning, GAO Yuan-yuan, WANG Ya-qi, SUO Quan-ling*. Effect of Substituent Structure of Benzothiazole Probe on Recognition to Metal Ion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3594-3598. |
[13] |
ZHU Dan-dan1, 2, QU Peng2*, SUN Chuang2, YANG Yuan2, LIU Dao-sheng1*, SHEN Qi3, HAO Yuan-qiang2*. A Benzothiazole-Based Long-Wavelength Fluorescent Probe for Dual-Response to Viscosity and H2O2[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(06): 1775-1779. |
[14] |
MA Hong-yan,WANG Jing-yuan, ZHANG Yue-cheng*, YANG Xiao-jun, CHEN Xiao-li. Determination of Dopamine by Fluorescence Quenching-Recovery Method with Peanut Carbon Quantum Dots as Probe[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(04): 1093-1098. |
[15] |
LIAN Jie1, REN Yi-fei2, YANG Rui-qin1*, HAO Hong-xia3. Rapid Detection System of 2,4,6-Trinitrophenol (TNP) Based on Fluorescent Probe[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(03): 804-808. |
|
|
|
|