|
|
|
|
|
|
Research Progress of Miniaturized Vis/NIR Spectrometers in Leaf and Fruit Nondestructive Detection |
ZHANG Xu1, XIE Zhuo-jun1, QIN Zi-quan1, ZHAO Rui-jie1, LIU Wen-zheng1, BAI Xue-bing1, XIONG Xiao-lin2*, LIU Xu1 |
1. College of Enology, Northwest A&F University, Yangling 712100, China
2. Xue Lin Yuan (Shenzhen) Wine Culture Co., Ltd., Shenzhen 518000, China
|
|
|
Abstract The physiological indicators of leaves reflect crop growth status, while the physicochemical parameters of fruits characterize their quality attributes. Efficient detection of key indicators in leaves and fruits is a crucial prerequisite for achieving precision agriculture. Visible/near-infrared (Vis/NIR) spectroscopy can non-destructivelydetect material composition and internal structures by capturing molecular vibrations and electron transition signals, synchronously acquiring spectral information across both visible and near-infrared bands. Currently, benchtopspectrometers are expensive, bulky, and power-consuming, making them difficult to use for on-site detection. The prices of commercial portable spectrometers and handheld spectrometers have decreased, but the level of intelligence is not high, which limits the widespread adoption of miniaturized spectrometers. To achieve more economical, efficient, and flexible spectral detection, the miniaturization of Vis/NIR spectrometers has become a critical research direction. In recent years, the development of sensor technology and microelectromechanical systems (MEMS) has driven the miniaturization of spectrometers. The advancement of data analysis optimization and machine learning modeling has further improved spectral detection accuracy. This paper compared key technologies in the development of miniaturized Vis/NIR spectrometers, including structural design, spectrometer integration, and model transfer. It analyzed spectral data processing optimizing methods, such as preprocessing, outlier removal, and feature extraction. Extraction. The construction of qualitative and quantitative prediction models, as well as evaluation indicators for these models, was discussed. Furthermore, it reviewed the latest domestic and international research progress in applying miniaturized Vis/NIR spectrometers to detect leaf physicochemical parameters (e.g., chlorophyll content, nitrogen levels, water content) and fruit quality indicators (e.g., sugar content, titratable acidity, color attributes). Current drawbacks in non-destructive detection of leaves and fruits were summarized, and future research directions for miniaturized Vis/NIR spectrometers were proposed. These research results provide directional guidance for the development of Vis/NIR spectrometer technology and have important reference value for the application and promotion of crop leaf and fruit detection.
|
Received: 2025-03-13
Accepted: 2025-06-20
|
|
Corresponding Authors:
XIONG Xiao-lin
E-mail: somso99999@163.com
|
|
[1] Cortés V, Blasco J, Aleixos N, et al. Trends in Food Science & Technology, 2019, 85: 138.
[2] Aparatana K, Naomasa Y, Sano M, et al. Journal of Near Infrared Spectroscopy, 2023, 31(1): 14.
[3] Lukacs M, Vitalis F, Bardos A, et al. Foods, 2024, 13(24): 4164.
[4] Dixit Y, Pham H Q, Realini C E, et al. Meat Science, 2020, 162: 108026.
[5] Zahir S A D M, Omar A F, Jamlos M F, et al. Sensors and Actuators A: Physical, 2022, 338: 113468.
[6] Wang D, Ding C, Feng Z, et al. Critical Reviews in Food Science and Nutrition, 2023, 63(8): 1143.
[7] Aline U, Bhattacharya T, Faqeerzada M A, et al. Frontiers in Plant Science, 2023, 14: 1240361.
[8] Singh H, Sridhar A, Saini S S. Food Analytical Methods, 2020, 13(10): 1879.
[9] Shanthini K S, Francis J, George S N, et al. Food Control, 2025, 167: 110794.
[10] Botero-Valencia J, Reyes-Vera E, Ospina-Rojas E, et al. Instruments, 2024, 8(1): 24.
[11] Ye W, Xu W, Yan T, et al. Foods, 2023, 12(1): 132.
[12] LI Xiong, LIU Yan-de, OUYANG Ai-guo, et al(李 雄,刘燕德,欧阳爱国,等). Chinese Journal of Luminescence(发光学报), 2019, 40(6): 808.
[13] Liu H, Wei Z, Lu M, et al. Computers and Electronics in Agriculture, 2024, 220: 108898.
[14] Noguera M, Millan B, Andújar J M. Agriculture, 2023, 13(1): 4.
[15] Habibullah M, Mohebian M R, Soolanayakanahally R, et al. Sensors, 2020, 20(5): 1449.
[16] FAN Shu-xiang, WANG Qing-yan, YANG Yu-sen, et al(樊书祥,王庆艳,杨雨森,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2021, 41(10): 3058.
[17] Dinish U S, Teng M T J, Xinhui V T, et al. Scientific Reports, 2023, 13(1): 9524.
[18] Wang M, Wang B, Zhang R, et al. Food Quality and Safety, 2023, 7: 1.
[19] LI Jia-meng, WANG Nan, LI Zhen, et al(李佳盟,王 楠,李 震,等). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2023, 54(S2): 270.
[20] CAI Jian-rong, HUANG Chu-jun, MA Li-xin, et al(蔡健荣,黄楚钧,马立鑫,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2023, 43(9): 2792.
[21] ZHU Wen-jie, HUANG Wen-qian, ZHU Qing-zhen, et al(朱文杰,黄文倩,祝清震,等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2024, 40(1): 286.
[22] GAO Sheng, WANG Qiao-hua, SHI Hang, et al(高 升,王巧华,施 行,等). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2021, 52(2): 308.
[23] TANG Wei-jie, WANG Nan, LIU Guo-hui, et al(唐伟杰,王 楠,刘国辉,等). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2022, 53(S1): 249.
[24] LAN Yu-bin, WANG Tian-wei, GUO Ya-qi, et al(兰玉彬,王天伟,郭雅琦,等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2022, 38(20): 119.
[25] Wang M, Luo D, Liu M, et al. Journal of Science: Advanced Materials and Devices, 2023, 8(2): 100555.
[26] Wang M, Zhang R, Wu Z, et al. Journal of Food Process Engineering, 2023, 46(12): e14474.
[27] SUN Hong, XING Zi-zheng, ZHANG Zhi-yong, et al(孙 红,邢子正,张智勇,等). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2019, 50(S1): 175.
[28] WANG Fan, ZHAO Chun-jiang, XU Bo, et al(王 凡,赵春江,徐 波,等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2020, 36(24): 273.
[29] SUN Hong, CHEN Xiang, SUN Zi-chun, et al(孙 红,陈 香,孙梓淳,等). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2018, 49(3): 173.
[30] Pampuri A, Tugnolo A, Giovenzana V, et al. Applied Sciences, 2022, 12(10): 4853.
[31] LI Yong-yu, WU Ji-feng, WANG Wei, et al(李永玉,吴继峰,王 威,等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2023, 39(23): 259.
[32] Singh R, Nickhil C, Upendar K, et al. Journal of Food Measurement and Characterization, 2025, 19(2): 862.
[33] Srinivasagan R, Mohammed M, Alzahrani A. Sensors, 2023, 23(16): 7081.
[34] QIAO Xin, PENG Yan-kun, WANG Ya-li, et al(乔 鑫,彭彦昆,王亚丽,等). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2020, 51(S2): 491.
[35] Li L, Guo J, Wang Q, et al. Sensors, 2023, 23(20): 8585.
[36] GUO Zhi-ming, WANG Jun-yi, SONG Ye, et al(郭志明,王郡艺,宋 烨,等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2021, 37(22): 271.
[37] Keshavarz Haddadha P, Rezvani M H, Mollamotalebi M, et al. Artificial Intelligence Review, 2024, 57(3): 61.
[38] Wang Y, Yang C, Lan S, et al. IEEE Communications Surveys & Tutorials, 2024, 26(4): 2647.
[39] Jiao Y, Li Z, Chen X, et al. Journal of Chemometrics, 2020, 34(11): e3306.
[40] Xia Y, Zhang W, Che T, et al. Applied Sciences, 2024, 14(21): 10001.
[41] Lu M, Wang H, Xu J, et al. Computers and Electronics in Agriculture, 2024, 225: 109301.
[42] Zhang R, Wang M, Liu P, et al. Postharvest Biology and Technology, 2024, 207: 112623.
[43] Sripaurya T, Sengchuai K, Booranawong A, et al. Measurement, 2021, 173: 108615.
[44] Spišic′ J, Šimic′ D, Balen J, et al. Remote Sensing, 2022, 14(11): 2596.
[45] He W, Huang W, Popovic T, et al. Food Control, 2025, 172: 111163.
[46] Meshram V, Patil K, Meshram V, et al. Artificial Intelligence in the Life Sciences, 2021, 1: 100010.
[47] LIN Wei-pan, LI Huai-min, NI Jun, et al(林维潘,李怀民,倪 军,等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2020, 36(20): 203.
[48] Wang J, Li X, Wang W, et al. Sensors, 2023, 23(2): 571.
[49] Nakashima S, Nagasawa A, Yokokura K, et al. Applied Spectroscopy Practica, 2023, 1(1): 10.1177/27551857231181923.
[50] GUO Wen-chuan, JI Tong-kui, ZHANG Zong-yi, et al(郭文川,纪同奎,张宗逸,等). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2023, 54(2): 403.
|
[1] |
FENG Hao-heng1, 2, 3, 4, LI Ke-qing5, 6, NIU Yuan-yuan2, 4, SUN Qing-di2, 4, XU Jin-chang2, 4, FANG Guang-you1, 2, 3, 4, CHEN Jian5, 6, HU Min7, 8, 9*, WANG Zhen-you1, 2, 3, 4*. Study on Identification Methods of Pericarpium Citri Reticulatae Based on Time-Gated Raman Spectroscopy and Support Vector Machine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(09): 2557-2562. |
[2] |
WANG Wei, NIE Sen*, LI Yong-yu, PENG Yan-kun, MA Shao-jin, ZHANG Yue-xiang. Digital Non-Destructive Testing of Internal Color of Potatoes and Rapid
Identification of Yellow and White Core Potatoes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(09): 2597-2605. |
[3] |
ZHANG Yuan1, 2, 3, 4, ZHOU Wen-hui1, 2, 3, GE Hong-yi1, 2, 3*, JIANG Yu-ying1, 2, 4, GUO Chun-yan1, 2, 3, WANG Heng1, 2, 3, WEN Xi-xi1, 2, 3, WANG Yu-xin3. Research on Defect Detection of GFRP Composites Based on Terahertz Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(07): 1874-1881. |
[4] |
CHEN Xin1, XU Sai2*, LU Hua-zhong3, LIANG Xin2. Monte Carlo-Based Full Transmission Light Transmission Simulation of Multi-Tissue Layers of Pomelo Fruit and Non-Destructive Testing of Internal Quality[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(07): 2026-2033. |
[5] |
WANG Jian-xu1, TAN Yin-yu1, QIN Dan2*, TANG Bin1, TANG Huan2, FAN Wen-qi2, YANG Wen1, ZHONG Nian-bing1, ZHAO Ming-fu1*. Research on Non-Destructive Detection of Moisture Content in Xuan Paper Based on Near-Infrared Reflectance Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(06): 1629-1638. |
[6] |
CHEN Zhuo-ting1, WANG Qiao-hua1, 2*, WANG Dong-qiao1, CHEN Yan-bin1, LI Shi-jun1, 2. Non-Destructive Detection of Pre-Incubation Breeding Duck Egg Fertilization Information Based on Visible/Near Infrared Spectroscopy and Joint Optimization Strategy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(05): 1469-1475. |
[7] |
LI Wei-qi1, WANG Yi-fan1, YU Yue1, LIU Jie1, 2, 3*. Establishment and Optimization of the Hyperspectral Detection Model for Soluble Solids Content in Fortunella Margarita[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(02): 492-500. |
[8] |
XU Yang1, MAO Yi-lin1, LI He1, WANG Yu1, WANG Shuang-shuang2, QIAN Wen-jun1, DING Zhao-tang2*, FAN Kai1*. Multispectral and Hyperspectral Prediction Models of REC, SPAD and MDA in Overwintered Tea Plant[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(01): 256-263. |
[9] |
XU Zi-yang1, 2, JIANG Xin-hua1, 2*, ZHAI Cheng-jun3, MA Xue-lei1, 2, LI Jing1, 2. Non-Destructive Detection of Multi-Indicator Chilled Mutton Freshness Based on Improved Artificial Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(01): 291-300. |
[10] |
WANG Hong-en, FENG Guo-hong*, XU Hua-dong, ZHANG Run-ze. Identification of Blueberry Ripeness Based on Visible-Near Infrared
Spectroscopy and Deep Forest[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3280-3286. |
[11] |
JIANG Yu-ying1, 2, 4, WEN Xi-xi1, 2, 3, GE Hong-yi1, 2, 3*, CHEN Hao1, 2, 3, JIANG Meng-die1, 2, 3, ZHAO Yang4, WANG Jia-hui4. Research Progress of Terahertz Technology in Defect Detection of
Composite Materials[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(10): 2717-2726. |
[12] |
WU Bin1, XIE Chen-ao2, CHEN Yong2, WU Xiao-hong2, JIA Hong-wen1. Discrimination of Chuzhou Chrysanthemum Tea Grades Using Noise
Discriminant C-Means Clustering[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(08): 2202-2207. |
[13] |
HUANG Hua1, LIU Ya2, MA Yi-hang1, XIANG Si-han1, HE Jia-ning1, WANG Shi-ting1, GUO Jun-xian3*. Prediction of Soluble Solid Contents in Apples Using Vis-NIRS and
Functional Linear Regression Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(07): 1905-1912. |
[14] |
LIU Zhen-fang, HUANG Min*, ZHU Qi-bing, ZHAO Xin, YAN Sheng-qi. Spatially Offset Raman Spectroscopy Analysis Technology and Application in Food Subsurface Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(05): 1201-1208. |
[15] |
ZHANG Wen-jing1, 2, XUE He-ru1, 2*, JIANG Xin-hua1, 2, LIU Jiang-ping1, 2, HUANG Qing1. An Improved XGBoosting Algorithm Based on Fat Content in Infant Milk Powder Prediction Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(05): 1464-1471. |
|
|
|
|