|
|
|
|
|
|
Preparation and Luminescence Performance of Li2Mg3TiO6:Sm3+
Orange-Red Phosphor |
LI Peng-cheng1, LI Zhao2*, WANG Wei-gang2, ZHOU Jun3* |
1. College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2. School of Materials Engineering, Xi'an Aeronautical Institute, Xi'an 710077, China
3. School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
|
|
|
Abstract A series of Li2Mg3TiO6:xSm3+ (0.005≤x≤0.010) orange-red phosphors was prepared using the high-temperature solid-state method. The luminescent transition mechanism of the phosphor was analyzed, and the packaging of LED devices was conducted. The results indicate that the Li2Mg3TiO6:Sm3+ prepared by the high-temperature solid-state method has a pure phase, uniform particle distribution, and an average particle size of 3 μm. The main excitation peak of Li2Mg3TiO6:Sm3+ is 344 nm, and the main emission peak is 677 nm, with an optimal doping concentration of 5%. At 350 K, the relative luminescent intensity of the sample is 63.5%, and the thermal activation energy ΔE is 0.363 eV. The color coordinates of Li2Mg3TiO6:0.05Sm3+ calculated by CIE are located in the red-light region (0.630 8, 0.358 4). The packaged LED device emits red light with good color rendering Li2Mg3TiO6:Sm3+ red phosphor is expected to be used in white light LEDs.
|
Received: 2025-01-24
Accepted: 2025-05-07
|
|
Corresponding Authors:
LI Zhao, ZHOU Jun
E-mail: pylizhao@163.com; zhoujun@xauat.edu.cn
|
|
[1] Valappil J S, Puthiyaveetil V V, Kottianmadathil S C, et al. Zeitschrift für Naturforschung A, 2024, 79(5): 503.
[2] Farooq M, Rasool M H, Rafiq H, et al. Ceramics International, 2024, 50(12): 21118.
[3] Rafiq H, Farooq M, Rubab S, et al. Journal of Electronic Materials, 2024, 53(6): 2929.
[4] Sun X K, Huang Z Z, Guo Y H, et al. Journal of Luminescence, 2020, 219: 116925.
[5] Song Y Y, Guo N, Li J, et al. Ceramics International, 2020, 46(14): 22164.
[6] Nantharak W, Wattanathana W, Klysubun W, et al. Journal of Alloys and Compounds, 2017, 701: 1019.
[7] Chung H T, Kim J G, Kim H G. Solid State Ionics, 1998, 107(1-2): 153.
[8] Ma J L, Cheng Q, Fu Z F, et al. Journal of Materials Science: Materials in Electronics, 2020, 31(22): 20444.
[9] Wu J X, Wu B L, Wang Q Q, et al. Optical Materials, 2024, 153: 115556.
[10] Anu, Kumari S, Deopa N, et al. Journal of Physics D: Applied Physics, 2024, 57(31): 315107.
[11] Kottianmadathil S C, Valappil J S, Puthiyaveetil V V, et al. Zeitschrift für Naturforschung A, 2023, 78(10): 959.
[12] WANG Qing-ling, Dilare Halimulati, SHEN Yu-ling, et al(王庆玲,迪拉热·哈力木拉提,沈玉玲,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2019, 39(4): 1013.
[13] Herrmann A, Zekri M, Maalej R, et al. Materials, 2023, 16(2): 564.
[14] Vijayalakshmi L, Kwon S J. Ceramics International, 2024, 50(3PB): 5728.
[15] Devi S, Dalal M, Dalal J, et al. Ceramics International, 2019, 45(6): 7397.
[16] Geng X, Xie Y, Chen S S, et al. Chemical Engineering Journal, 2021, 410: 128396.
[17] Kiwsakunkran N, Chanthima N, Kim H J, et al. Integrated Ferroelectrics, 2023, 239(1): 135.
[18] Yang Z F, Ye M J, Yang S Y, et al. Ceramics International, 2024, 50(12): 21745.
[19] Pan F, Liu Y Y, Tu C Y. Journal of Luminescence 2025, 280: 121117.
[20] Niu C H, Deng Y J. Journal of Luminescence, 2018, 204: 528.
[21] Li C Y, Huang C C, Huang C L. Ceramics International, 2025, 51(13): 17718.
[22] Liu S Y, Gao D, Chen X, et al. Journal of Luminescence, 2025, 281: 121172.
[23] Song Hongji, Li Junhao. Ceramics International, 2025, 51(15): 20709.
[24] Xiang Y F, Yang L, Liao C Y, et al. Journal of Advanced Ceramics,2023, 12(4): 848.
[25] Wang Q, Wen J, Zheng J Y, et al. Journal of Luminescence,2022, 252: 119306.
[26] Thammanna B M, Viswanathan K, Nagaswarupa H P, et al. Materials Today: Proceedings, 2017, 4(11): 12306.
[27] Jiang D C, Geng L, Zhou S S, et al. Inorganic Chemistry Communications, 2022, 142: 109668.
[28] Zhu G, Li Z W, Zhou F G, et al. Journal of Luminescence, 2018, 196: 32.
[29] Neharika, Singh V K, Sharma J, et al. Journal of Alloys and Compounds, 2018, 738: 97.
[30] Manhas M, Kumar V, Singh V K, et al. Current Applied Physics, 2017, 17(11): 1369. |
[1] |
WANG Yun-zheng1, JI Hong-bo1, LI Zhao2*, WU Kun-yao1, 2*, WANG Ya-nan2. Preparation of Ba9Lu2Si6O24:Eu3+Red Phosphor and Its Application in White Light-Emitting Diode[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(05): 1455-1461. |
[2] |
LIN Fang1, 2, LIU Wen-qing1, 2*, WANG Yu3, CHANG Zhen2, ZHANG Quan2, SI Fu-qi2. Dark Current Analysis and Processing Method of Environment
Monitoring Instrument Nadir and Limb[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(03): 789-797. |
[3] |
WANG Shuo1, 2, XIE Zhen-kun1, 2, WEI Zhi-peng1*. DMD-Based Hadamard Transform Near-Infrared Spectrometer Design and Implementation of Fast Processing System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(01): 133-138. |
[4] |
DAI Lin-lin1, SU Jin1, KOU Fei-fei1*, QI Li-mei1, 2*, SUN Dan-dan1, SHI Dan1. Review of the Terahertz Metamaterial Devices Based on the
CiteSpace Software[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 910-917. |
[5] |
ZHANG Chun-yu1, 2, ZHOU Jin-song1, 2, HE Xiao-ying1, JING Juan-juan1, 2, FENG Lei1*. Design of Imaging Spectrometer Based on Metasurface[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 225-229. |
[6] |
ZHAO Qian1,2, YANG Yu-dong1, GUI Bo1,2, MAO Hai-yang1,2,3*, LI Rui-rui1, CHEN Da-peng1,2,3. Surface-Enhanced Raman Scattering Transparent Devices Based on Nanocone Forests[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(04): 1168-1173. |
[7] |
SUN Chuan-yao1, LUO Lan1, 2*, WANG Yu1, GUO Rui1, ZHANG Yuan-bo1. Photoluminscence Spectra and Ternary CIE Colour Image of (Mg1-x-yBaxSry)1.95SiO4∶0.05Eu Phosphor Series[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(01): 98-106. |
[8] |
DUAN Liang-fei1, WANG Guang-hua1, 2, QIAN Fu-li1, GAO Si-bo1, DUAN Yu1, 2*, JI Hua-xia1, FAN Heng1. Study on Blue Dopant Ratio on the Performance of TOP-Emitting White OLED Microdisplays[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(08): 2630-2633. |
[9] |
WANG Qing-ling, Dilare Halimulati, SHEN Yu-ling, HE Jiu-yang, Aierken Sidike*. Synthesis and Luminescence Properties of Sr2-x-yAl2SiO7∶x%Sm3+, y%Li+ Phosphors[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(04): 1013-1017. |
[10] |
WANG Hao1, 2, ZHAO Su-ling1, 2*, XU Zheng1, 2, SONG Dan-dan1, 2, QIAO Bo1, 2, WANG Peng1, 2, ZHENG Wei-ye1, 2, WEI Peng1, 2. The Influence of Deep Trap on the Efficiency Decrease in PhOLEDs Based on Double Dopants Strategy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(04): 1018-1024. |
[11] |
LEI Yong, LIU Zhen, FAN Chang-jun, JI Xia-xia, PENG Xue-feng, LI Guo-qing, YANG Xiao-hui* . Study on Tandem Polymer Light Emitting Devices [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(03): 715-722. |
[12] |
WANG Guang-hua1,2, ZHAO Hui-qiong1,2, DENG Rong-bin1, DUAN Yu1,2, SUN Hao1, ZHANG Xiao-dan1,2, ZHOU Qin1, QIAN Jin-mei1, WAN Rui-min1,2, JI Hua-xia1, JI Rong-bin2. Research on the Preparation and Chromaticity Coordinates Shift Mechanism of Organic White Light Top-Emitting Devices[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(11): 3758-3763. |
[13] |
JING Qiu-min1, LIU Sheng-gang1*, LIU Yong-gang2, BI Yan1 . Fluorescent Characteristics of Strontium Tetraborate (SrB4O7) Doped with Divalent Lanthanide Elements [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(01): 130-133. |
[14] |
MA Yuan-yuan, HE Jiu-yang, Aziguli·Reheman, Bahadeer·Rouzi, Aierken·Sidike* . Photoluminescence of Sinthetic Scapolite Na4Ca4Al6Si9O24 Phosphors Activated with Ce3+ and Tb3+ and Energy Transfer from Ce3+ to Tb3+[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(11): 3241-3246. |
[15] |
XIE Wen-bin, ZHU Yong*, GONG Tian-cheng, CHEN Yu-lin, ZHANG Jie . Study on Single-Walled Carbon Nanotube Thin Film Photoelectric Device[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(01): 272-275. |
|
|
|
|