|
|
|
|
|
|
Effects of Different Wavelengths of Ultraviolet Light on the Photolysis of Easily Extractable Humus in Severely Rocky Desertification Soils |
KONG Ling1, WANG Yan1, 2, 3, WANG Ke-qin1, ZHAO Yang-yi1, ZHANG Ye-fei1, 2, 3* |
1. Rocky Desertification Research Institute, College of Soil and Water Conservation, Southwest Forestry University, Kunming 650224,China
2. Engineering Research Center of Stony Desertification Prevention in Universities of Yunnan Province, Kunming 650224,China
3. Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming 650224,China
|
|
|
Abstract This study focuses on the soil of severely rocky desertification,simulating the photolysis process under various wavelengths of ultraviolet(UV) light in drought conditions.The aim is to investigate the decomposition and transformation process of easily extractable humus in severely rocky desertification under varying UV light exposures. The results indicated that: (1) Under various wavelengths of UV irradiation, the total carbon (TC) and total nitrogen (TN) levels in severely rocky desertification soil showed an upward trend as the irradiationtime increased. However, the decrease in the C/N indicated that the irradiation of UV light promoted mineralization and decomposition rate of humus. (2) The contents of primary amine, double bond, carbonate, and O—H of carboxy were stabilized after fluctuating change in the humus easily extracted from the severely rocky desertification soil. They affected the hydrocarbon-generating process to varying degrees depending on various wavelengths of UV irradiation. (3)With increased irradiation time, the substituent group on the benzene ring of the easily extractable humus gradually became dominated by aliphatic chains, the degree of aromatization was enhanced, and the hydrophobic component was increased under UVA and UVB irradiation.In conclusion, ultraviolet radiation in different wavelengths could affect the capacity for hydrocarbon generation, promote the condensation and aromatization of easily extractable humus, and accelerate the process of soil humus mineralization.
|
Received: 2024-08-02
Accepted: 2025-03-03
|
|
Corresponding Authors:
ZHANG Ye-fei
E-mail: zhangyefei@swfu.edu.cn
|
|
[1] YAN Chang-hong(阎长虹). Geological Review(地质论评), 2004, (2): 124.
[2] LUO Heng-chun, WEI An-chao(罗恒春, 魏安超). Chinses Journal of Tropical Agriculture(热带农业科学), 2023, 43(11): 87.
[3] WANG Bin, ZENG Dan, LIANG Xin-yu, et al(王 彬, 曾 丹, 梁馨予,等). Journal of Safety and Environment(安全与环境学报), 2020, 20(5): 1950.
[4] MO Bin, CAO Jian-hua, XU Xiang-ming, et al(莫 彬, 曹建华, 徐祥明,等). Research of Soil and Water Conservation(水土保持研究), 2007, (3): 16.
[5] MA Shu-qin, DEJI Yang-zong, QIN Xiao-jing, et al(马书琴, 德吉央宗, 秦小静, 等). Journal of Zhejiang Agriculture and Forestry University(浙江农林大学学报). 2021, 38(5): 985.
[6] Hashimoto Y, Yamaguchi N. Soil Science Society of America Journal, 2013, 77(4): 1189.
[7] Huang W, González G, Barberena-Arias M F, et al. Biology and Fertility of Soils. 2020, 57(1): 153.
[8] JIN Xin-xin, WANG Jing-kuan, SUN Liang-jie, et al(金鑫鑫, 汪景宽, 孙良杰, 等). Soil(土壤),2017, 49(2): 217.
[9] Derenne S, Quénéa K. Journal of Analytical and Applied Pyrolysis, 2015, 111: 108.
[10] Gude A, Kandeler E, Gleixner G. Soil Biology and Biochemistry, 2012, 47: 209.
[11] Leigh J, Fitter A H, Hodge A. FEMS Microbiology Ecology, 2011, 76(3): 428.
[12] ZHAO Zi-fan, SUN Huan, SU Ya-ling(赵紫凡, 孙 欢, 苏雅玲). Journal of Lake Science(湖泊科学), 2019, 31(4): 1088.
[13] CHEN Zong-ding, XU Chun-xue, LIU Gui-lei, et al(陈宗定, 许春雪, 刘贵磊, 等). Physical Testing and Chemical Analysis Part B: Chemical Analysis[理化检验(化学分册)], 2023, 59(7): 771.
[14] Abarghani A, Gentzis T, Shokouhimehr M, et al. Fuel, 2020, 261, 116454.
[15] Yang J, Hatcherian J, Hackley P C, et al. Nature Communications, 2017, 8(1): 2179.
[16] Chen Y Y, Zou C N, Mastalerz M, et al. International Journal of Molecular Sciences, 2015, 16(12): 30223.
[17] ZHAO Sheng-hui, ZHAO Jian-hua, LIU Ke-yu, et al(赵生辉, 赵建华, 刘可禹, 等). Natural Gas Geoscience(天然气地球科学), 2024, 35(7): 1249.
[18] Dembicki H. AAPG Bulletin, 2009, 93(3): 341.
[19] Korshin G V, Li C W, Benjamin M M. Water Research, 1997, 31(4): 946.
[20] Rozema J, Tosserams M, Nelissen N H J, et al. Plant Ecology, 1997, 128(1-2): 284.
[21] GONG Li,LIU Guo-hua,LI Zong-shan, et al(宫 立, 刘国华, 李宗善, 等). Acta Ecologica Sinica(生态学报), 2017, 37(14): 4696.
[22] KUAI Yan, SU Xin-yue, WANG Jin-feng, et al(蒯 雁, 苏欣悦, 王晋峰, 等). Journal of Agricultural Science and Technology(中国农业科技导报), 2023, 25(12): 177.
[23] Liu Y, Zhu Y M, Chen S, et al. Energy & Fuels, 2018, 32(10): 10616.
[24] Chen Y Y, Caro L D, Mastalerz M, et al. Journal of Microscopy, 2013, 249(1): 69.
[25] Chen Y Y, Mastalerz M, Schimmelmann A. International Journal of Coal Geology, 2012, 104: 22.
[26] Chen Y Y, Mastalerz M, Schimmelmann A. Journal of Microscopy, 2014, 256(3): 177.
[27] Craddock P R, Le Doan T V, Bake K, et al. Energy & Fuels, 2015, 29(4): 2197.
[28] LI Ye, ZHOU Cong-cong, DAI Ling-xing, et al(黎 烨, 周聪聪, 戴零星, 等). Acta Scientiae Circumstantiae(环境科学学报), 2017, 37(3): 1098.
[29] Artinger R, Buckau G, Geyer S, et al. Applied Geochemistry, 2000, 15(1): 97.
[30] Grand-Clement E, Luscombe D J, Anderson K, et al. Science of the Total Environment, 2014, 493: 961.
[31] HU Chun-ming, ZHANG Yuan, YU Tao, et al(胡春明, 张 远, 于 涛,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2011, 31(11): 3022.
[32] Wang L Y, Wu F C, Zhang R C, et al. Journal of Environmental Sciences, 2009, 21(5): 581. |
[1] |
HU Zhen-lin1, 2, WANG Tian-ze1, 2, HE Liang1, 2, LIN Nan1, 2*, LENG Yu-xin1, 2, CHEN Wei-biao3. Research on Emission Spectrum Diagnosis of Laser-Produced Tin Plasma Extreme Ultraviolet Source[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(07): 1834-1841. |
[2] |
JIANG Song1, LIU Tong1, WANG Yong-gang1, SUN Jiu-ai2, WU Zhong-hang2, QU Qian3*. Research on Particle Distribution of DBD Characteristics Based on UV Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(07): 1888-1893. |
[3] |
KANG Zi-tong1, 2, 3, ZHANG Sa-sa1, JIAO Zi-wei1, GAO Xin2, CHANG Yuan2, ZHANG Long-li4, CHEN Wen-jie2, XU Ting2, LI Ji2, WEI Yu-quan1, 2, 3*. Effect of Amino Acids on Abiotic Synthesis of Humic Acid[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(06): 1612-1621. |
[4] |
GUAN Li-chang1, 2, FENG Lei2, 3, ZHAO Nan1*, JIANG Xue-mei2*. Study of Fenfluramine Molecule Based on the Density Functional Theory[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(05): 1270-1276. |
[5] |
ZHAO Yu-xia1, ZHANG Ming-jin1, 3*, WANG Ru1, ZHANG Shi-zhi2, YIN Bo1, 3. Discriminative Study on Huzhu Qingke Liquor by Back Propagation
Neural Network Combined With Ultraviolet-Near Infrared Fusion
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(05): 1290-1299. |
[6] |
LI Min1, YIN Xiong1, LIU Xue-jing1, MA Shi-yi1, ZHOU Yan1*, CHONG Dao-tong1, XIONG Bing2, LI Kun2. Study on Detection of Gas Void Fraction in Oil-Gas Two-Phase Flow Based on Ultraviolet Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(02): 522-531. |
[7] |
CHEN Ji-wen, CHEN Zuo-er*, ZHAO Ying*. A High-Sensitivity Full-Spectrum Spectrometer Based on a Cylindrical Lens Focusing System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(01): 222-230. |
[8] |
ZHANG Jia-wei1, WU Dong-sheng1, ZHOU Yang2, LI Yang2, 3, 4, SUN Lan-xiang2, 3, 4*. Study on the Influence of Argon Environment on the Determination of C, P and S Elements in Steel by Laser-Induced Breakdown Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(10): 2834-2839. |
[9] |
SHEN Yong-cai1, NIU Yu-fan1, KONG De-feng2, YE Yang2*, ZHANG Shou-biao3, LI Da-chuang1, TAN Ming-sheng2, HUANG Yan-qing4, ZHAO Zhi-hao5, ZI Peng-fei3, ZHANG Xiao-hui5, WEN Fei3. Development and Performance Test of a Seya-Namioka Vacuum
Ultraviolet Spectroscopy System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(08): 2158-2165. |
[10] |
SONG Yu1, 2, LI Wei-hua1, 2*, XUE Tong-zhan1, 2, YU Li1, 2, SHEN Hui-yan1, 2. Spectral Feature Band Selection and Interval Partial Least Squares
Modeling of Short-Range Nitrification Process[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(08): 2224-2232. |
[11] |
WANG Hai-zhen1, 2, 3, GUO Jian-fen1, 2, 3*, ZHANG Lei1, 2, 3, LIN Hao1, 2, 3, LIN Jing-wen1, XIONG De-cheng1, 2, 3, CHEN Shi-dong1, 2, 3, YANG Yu-sheng1, 2, 3. Composition and Spectral Characteristics of Soil Dissolved Organic Matter Leachate From Different Planted Tree Species[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(02): 490-496. |
[12] |
ZHANG Xue-fei1, DUAN Ning1, 2*, JIANG Lin-hua1, 2*, CHENG Wen2, YU Zhao-sheng3, LI Wei-dong2, ZHU Guang-bin4, XU Yan-li2. Study on Stability and Sensitivity of Deep Ultraviolet Spectrophotometry Detection System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3802-3810. |
[13] |
XIE Zhuo1, 3, WANG Hai-jian1, DOU Yin-ping1*, SONG Xiao-wei1*, LIN Jing-quan1, 2. Characteristics of Extreme Ultraviolet and Debris Emission From Laser Produced Bi Plasma[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2056-2062. |
[14] |
RUAN Ou1, 2, LIU Sui-hua1, 2*, LUO Jie1, 2, HU Hai-tao1, 2. Rocky Desertification Information Extraction in Karst Terrain Complex Area Based on Endmember Variable[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2269-2277. |
[15] |
SONG Peng1, CAI Yuan-min1*, GENG Xiao-jun2, GUO Hua1, JI Han-wu1, ZHANG Guo-qing3. Study on Scattering Transmission Characteristics of Wireless UV Communication Based on Particle Size Distribution[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 970-977. |
|
|
|
|