|
|
|
|
|
|
Research Progress on Analysis Methods of Blood Residues in Ancient
Heritages |
HUANG Ya-wen1, 2, 3, YAN Bing-bing1, 2, 3, DONG Jia-ning1, 2, 3, LIU Yan1, 2, 3, YANG Fu-wei1, 2, 3*, ZHANG Kun1, 2, 3*, WANG Lu1, 2, 3, WEN Rui1, 2, 3, YANG Lu1, 2, 3, WANG Li-qin1, 2, 3 |
1. China-Central Asia “the Belt and Road” Joint Laboratory on Human and Environment Research, Northwest University, Xi'an 710127, China
2. Key Laboratory of Cultural Heritage Research and Conservation, Northwest University, Xi'an 710127, China
3. School of Culture Heritage, Northwest University, Xi'an 710127, China
|
|
|
Abstract Blood residues in artifacts are closely connected to ancient people's production and daily life. Analyzing these residues can offer valuable insights into ancient social and religious rites, societal development, technological advances, customs, and practices, making it highly significant for academic research. Currently, methods for analyzing blood residues in artifacts are generally divided into chemical and instrumental categories. Chemical methods rely on the peroxidase activity of the heme structure in hemoglobin, which can catalyze color reactions in compounds such as phenolphthalein and tetramethylbenzidine, allowing for preliminary screening of archaeological samples that might contain blood residues. The hematochromic crystal test has also been used to analyze blood residues on artifacts, but its reliability has been widely debated. Although traditional chemical methods are straightforward, quick, and cost-effective, they are susceptible to false positive results due to external interferences. In addition, these methods lack accuracy and specificity. With advancements in science and interdisciplinary approaches, instrumental methods, particularly spectroscopic techniques, have become increasingly prevalent in scientific archaeology. Instruments like mass spectrometry, Raman spectroscopy, UV-visible absorption spectroscopy, and X-ray fluorescence spectroscopy can further identify compounds such as hemoglobin and heme in blood. Spectroscopic methods offer high accuracy and minimal sample consumption and can even be non-destructive, though they face challenges such as complex sample preparation and high costs. Overall, current analyses of blood residues in artifacts are mostly limited to isolated case studies, with methods lacking completeness and systematic integration. This paper reviews domestic and international research and application of blood residue analysis methods, clarifying each method's advantages, limitations, and suitable applications to provide useful references for developing a comprehensive blood residue detection and analysis system in the future.
|
Received: 2024-09-02
Accepted: 2024-12-05
|
|
Corresponding Authors:
YANG Fu-wei, ZHANG Kun
E-mail: yangfuwei@nwu.edu.cn;kun.zhang@nwu.edu.cn
|
|
[1] YANG Hua(杨 华). Studies in World Religions(世界宗教研究), 2003, (3): 22.
[2] GONG Wei-jun(公维军). National Arts(民族艺术), 2020, (2): 65.
[3] GENG Xue-min(耿雪敏). Journal of Henan Polytechnic University(Social Sciences)[河南理工大学学报(社会科学版)], 2018, 19(4): 83.
[4] WEI Ya-ming(魏亚明). Ability and Wisdom(才智), 2015, (25): 284.
[5] DONG Fen-fang,CHENG Fang(董芬芳,程 芳). Journal of Social Sciences(社会科学), 2024, (9): 67.
[6] LI Mo(李 模). Study & Exploration(学习与探索), 2000, (4): 134.
[7] ZHOU Qian(周 乾). Construction Technology[施工技术(中英文)], 2024, 53(17): 107.
[8] Fu Y, Chen Z, Zhou S, et al. Journal of Archaeological Science,2020, (114): 105060.
[9] WANG Li-qin, YANG Lu, ZHOU Wen-hui, et al(王丽琴, 杨 璐, 周文晖, 等). Relics and Museolgy(文博), 2009, (6): 451.
[10] ZHOU Wen-hui, WANG Li-qin, FAN Xiao-lei, et al(周文晖, 王丽琴, 樊晓蕾, 等). Journal of Inner Mongolia University (Natural Science Edition)[内蒙古大学学报(自然科学版)], 2010, 41(5): 522.
[11] Rao H, Li B, Yang Y, et al. Analytical Methods, 2015, 7(1): 143.
[12] WANG Na,MIN Jun-rong,KANG Bao-qiang,et al(王 娜, 闵俊嵘, 康葆强, 等). Sciences of Conservation and Archaeology(文物保护与考古科学), 2023, 35(1): 101.
[13] LI Sheng-xian(李盛仙). China Health Care Nutrition(中国保健营养), 1998, (7): 43.
[14] ZHAO Yu-xiang, ZHANG Rong-jun(赵宇翔, 张荣军). Guizhou Ethnic Studies(贵州民族研究), 2022, 43(6): 145.
[15] Loy T H. Science, 1983, 220(4603): 1269.
[16] Loy T H, Hardy B L. Antiquity, 1992, 66(250): 24.
[17] Loy T H, Jones R, Nelson D E, et al. Antiquity, 1990, 64(242): 110.
[18] GUO He-guo(郭和国). Forensic Science and Technology(刑事技术), 2002, (3): 46.
[19] Cox M. Journal of Forensic Sciences, 1991, 36(5): 1503.
[20] Miklin-kniefacz S, Pitthard V, Parson W, et al. Studies in Conservation, 2016, 61(sup3): 45.
[21] Grodsky M, Wright K, Kirk P L. The Journal of Criminal Law, Criminology, and Police Science, 1951, 42(1):95.
[22] Gomes C, López-Matayoshi C, Palomo-Díez S, et al. Forensic Science International: Genetics Supplement Series, 2017, 6: e546.
[23] Fang S, Zhang H, Zhang B, et al. Journal of Cultural Heritage, 2014, 15(2): 144.
[24] Higaki R S, Philp W. Canadian Society of Forensic Science Journal, 1976, 9(3): 97.
[25] DING Xiang-zhou(丁湘舟). Chinese Journal of Clinical Laboratory Science(临床检验杂志), 1988, (4): 197.
[26] Zhai Kuanrong, Zhang Bingjian, Zhu Longguan. Journal of Cultural Heritage, 2023, 62: 284.
[27] Gurfinkel D M, Franklin U M. Journal of Archaeological Science, 1988, 15(1): 83.
[28] WANG Bao-jie(王保捷). Forensic Medicine(法医学). Beijing: People's Medical Publishing House(北京: 人民卫生出版社), 1987. 183.
[29] Loy T H, Wood A R. Journal of Field Archaeology, 1989, 16(4): 451.
[30] Loy T H, Dixon E J. American Antiquity 1998, 63(1): 21.
[31] Verma H. Forensic Science International, 2022, 335: 111313.
[32] Asakura T, Yoneyama Y. The Journal of Biochemistry, 1964, 55(1): 90.
[33] Smith P R, Wilson M T. Journal of Archaeological Science, 1992, 19(3): 237.
[34] Malainey M E. Blood and Protein Residue Analysis, 2011: 219.
[35] YAN Xin-yu, ZHANG Jin-zhuan, JIN Jing, et al(闫欣雨, 张金专, 金 静, 等). Chinese Journal of Chemical Education[化学教育(中英文)], 2023, 44(20): 7.
[36] YUAN Chuan-jun(袁传军). Chinese Journal of Chemical Education[化学教育(中英文)], 2021, 42(10): 7.
[37] Lee W Y, Hong S W. Journal of Forensic Sciences, 2022, 67: 161.
[38] Zhang K, Corti C, Grimoldi A, et al. Applied Spectroscopy, 2019, 73(5): 479.
[39] HUANG Jian-hua, YANG Lu, WANG Li-qin(黄建华, 杨 璐, 王丽琴). XiBuKaoGu(西部考古), 2022, (1): 407.
[40] MA Ke-fu, GONG Wan-li(马克富, 龚婉莉). China Mining Magazine(中国矿业), 2024, 33(8): 218.
[41] CAI Jun, LI Wen, SHI Mei, et al(蔡 军, 李 文, 史 梅, 等). University Chemistry(大学化学), 2022, 37(12): 223.
[42] XIE Ji-yun, JIANG Zhi-liang, ZHONG Fu-xin, et al(谢济运, 蒋治良, 钟福新, 等). Analysis and Testing Technology and Instruments(分析测试技术与仪器), 2000, (3): 178.
[43] QIU Jia-chu, RUAN Ping, YONG Jun-guang, et al(丘家杵, 阮 萍, 雍军光, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2020, 40(5): 1425.
[44] ZHUANG Yuan, GAO Shu-hui, HUANG Wei, et al(庄 园, 高树辉, 黄 威, 等). Journal of People's Public Security University of China(Science and Technology)[中国人民公安大学学报(自然科学版)], 2021, 27(1): 1.
[45] ZHUANG Yuan, GAO Shu-hui, XIE Fei, et al(庄 园, 高树辉, 谢 菲, 等). Laser & Optoelectronics Progress(激光与光电子学进展), 2022, 59(16): 1630001.
[46] Cucci C, Guidi T, Picollo M, et al. Heritage Science, 2024, 12(1): 75.
[47] Peng J Y, Yu K, Wang J, et al. Journal of Cultural Heritage, 2019, 36: 32.
[48] Dai R C, Tang B, Zhao M F, et al. Journal of Physics: Conference Series, 2021, 2010(1): 012177.
[49] Zhao Y F, Hu N N, Wang Y N, et al. Cluster Computing, 2019, 22(4): 8453.
[50] Fraser D, Deroo C S, Cody R B, et al. The Analyst, 2013, 138(16): 4470.
[51] YANG Lu, HUANG Jian-hua, WANG Li-qin, et al(杨 璐, 黄建华, 王丽琴, 等). Journal of Northwest University(Natural Science Edition)[西北大学学报(自然科学版)], 2020, 50(4): 589.
[52] Ma Z, Wang L, Yan J, et al. Analytical Letters, 2019, 52(10): 1670.
[53] FU Ying-chun, HUANG Ya-zhen, ZONG Shu, et al(付迎春, 黄亚珍, 宗 树, 等). Sciences of Conservation and Archaeology(文物保护与考古科学), 2022, 34(5): 22.
[54] WANG Na, GU An, MIN Jun-rong, et al(王 娜, 谷 岸, 闵俊嵘, 等). Chinese Journal of Analytical Chemistry(分析化学), 2020, 48(1): 90.
[55] Rao H, Li B, Yang Y, et al. Anal. Methods, 2015, 7(1): 143. |
[1] |
WANG Jian-xu1, TAN Yin-yu1, QIN Dan2*, TANG Bin1, TANG Huan2, FAN Wen-qi2, YANG Wen1, ZHONG Nian-bing1, ZHAO Ming-fu1*. Research on Non-Destructive Detection of Moisture Content in Xuan Paper Based on Near-Infrared Reflectance Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(06): 1629-1638. |
[2] |
LIU Zhen1, FAN Shuo2*, LIU Si-lu2, ZHAO An-ran2, LIU Li3. Research on Prediction of Pigment Concentration in Color Painting Based on BOA-FRNN Spectral Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(02): 322-331. |
[3] |
TANG Bin1, HE Yu-long1, TANG Huan2*, LONG Zou-rong1, WANG Jian-xu1*, TAN Bo-wen2, QIN Dan2, LUO Xi-ling1, ZHAO Ming-fu1. Attention Mechanism Based Hyperspectral Image Dimensionality Reduction for Mold Spot Recognition in Paper Artifacts[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(01): 246-255. |
[4] |
GAO Yu1, 2, SUN Xue-jian1, 3*, LI Guang-hua3, 4, ZHANG Li-fu1, 3, QU Liang3, 4, ZHANG Dong-hui5. Hidden Handwriting Recognition of Calligraphy Artifact Based on
Hyperspectral Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(12): 3485-3493. |
[5] |
WANG Cong1, 2, Mara Camaiti3, LIU Dai-yun4, TIE Fu-de2, 5, CAO Yi-jian5, 6*. Recent Advances in the Application of the Field-Portable Hyperspectral Radiometer to Characterize Materials Concerning Cultural Heritage[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(05): 1218-1226. |
[6] |
DANG Rui, GAO Zi-ang, ZHANG Tong, WANG Jia-xing. Lighting Damage Model of Silk Cultural Relics in Museum Collections Based on Infrared Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3930-3936. |
[7] |
ZHAO Wen-hua1, 2, HAN Xiang-na1*, YE Lin2, BAI Jiu-jiang2. Accurate Identification of Common Soluble Salts in Cultural Relics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3826-3831. |
[8] |
LIU Wei1, 2, ZHANG Peng-yu1, 2, WU Na1, 2. The Spectroscopic Analysis of Corrosion Products on Gold-Painted Copper-Based Bodhisattva (Guanyin) in Half Lotus Position From National Museum of China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3832-3839. |
[9] |
ZHENG Yi-xuan1, PAN Xiao-xuan2, GUO Hong1*, CHEN Kun-long1, LUO Ao-te-gen3. Application of Spectroscopic Techniques in Investigation of the Mural in Lam Rim Hall of Wudang Lamasery, China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2849-2854. |
[10] |
GONG Xin1, 2, HAN Xiang-na1*, CHEN Kun-long1. Anti-Aging Performance Evaluation of Acrylate Emulsion Used for Cultural Relics Conservation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2181-2187. |
[11] |
CHENG Xiao-xiang1, WU Na2, LIU Wei2*, WANG Ke-qing2, LI Chen-yuan1, CHEN Kun-long1, LI Yan-xiang1*. Research on Quantitative Model of Corrosion Products of Iron Artefacts Based on Raman Spectroscopic Imaging[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2166-2173. |
[12] |
WANG Ke-qing1, 2*, WU Na1, 2, CHENG Xiao-xiang3, ZHANG Ran1, 2, LIU Wei1, 2*. Use of FTIR for the Quantitative Study of Corrosion Products of Iron
Cultural Relics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1846-1853. |
[13] |
ZHENG Li-zhen1, 2, CHENG Cong2, MA Wen-hua2, WANG Zhuo-rui2, HU Dao-dao2*. Online Detection of Water Forms and Moisture Volatilization Behavior in Earthen Relics Based on FE Fluorescence Probe[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 383-388. |
[14] |
CHEN Dong-mei1, 2, MA Liang-liang2, ZHANG Xian-ming1, 3*. Application Progress of Non-Destructive Spectroscopy on Conversation of Cultural Relics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 334-341. |
[15] |
WU Meng-ruo, QIN Zhen-fang, HAN Liu-yang, HAN Xiang-na*. Preparation and Spectra Study of Artificially Degraded Waterlogged Wood[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2941-2946. |
|
|
|
|