|
|
|
|
|
|
Preliminary Raman Spectroscopic Study of Szaibélyite |
SUI Xin-hao1, 2, ZHAO Xu-wei1, 2, BAO Xin-jian1, 2, HE Ming-yue3, LIU Xi1, 2* |
1. Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, Beijing 100871, China
2. School of Earth and Space Sciences, Peking University, Beijing 100871, China
3. School of Gemmology, China University of Geosciences (Beijing), Beijing 100083, China
|
|
|
Abstract Szaibélyite is a hydrated borate mineral with limited research on its Raman spectrum. This study conducted a preliminary Raman spectroscopic analysis of szaibélyite, with the Raman data collected on szaibélyite found in some serpentinized jianite from Ji'an County, Jilin Province, China. Our microscopic observations show that the szaibélyite is associated with serpentine-group minerals, forsterite, brucite, etc. It occurs as fibrous or fine flattened crystals with diameters of up to several tens of micrometers or nanocrystals forming aggregates with minor amounts of nano brucite. Energy dispersive spectroscopy analyses suggest its composition is close to the ideal MgBO2(OH) formula. In the range of 100~1 600 cm-1, approximately 28 Raman peaks have been observed, with the strongest peak appearing at ~823 cm-1. In the range of 3 000~4 000 cm-1, two sharp strong peaks at ~3 058 and 3 553 cm-1 and a weak shoulder peak at ~3 562 cm-1 have been observed. Among them, the Raman peak at ~3 058 cm-1 is observed for the first time. These peaks are mostly related to the O—H stretching vibrations. Aided with previous single-crystal X-ray diffraction data and infrared spectroscopic data, we propose that the strong Raman peaks at ~3 058 and 3 553 cm-1 may be caused respectively by the hydroxyl groups O(4)—H and O(6)—Hin szaibélyite. The origin of the weak shoulder peak at ~3 562 cm-1 is still unclear and requires further investigation.
|
Received: 2024-06-26
Accepted: 2024-09-10
|
|
Corresponding Authors:
LIU Xi
E-mail: xi.liu@pku.edu.cn
|
|
[1] Woods W G. Environmental Health Perspectives, 1994, 102: 5.
[2] Grew E S. Elements, 2015, 11(3): 162.
[3] Schaller W T. American Mineralogist, 1942, 27(7): 467.
[4] Peng C C, Wu C Y, Chang P H. Crystal Structure of Ascharite. Scientia Sinica, 1963, 12: 1761.
[5] Takéuchi Y, Kudoh Y. American Mineralogist, 1975, 60: 273.
[6] Grice J D. The Canadian Mineralogist, 2008, 46(3): 671.
[7] Anthony J W, Bideaux R A, Bladh K W. Handbook of Mineralogy. Tucson: Mineral Data Publishing, 1990.
[8] Takéuchi Y. Mineralogical Journal, 1958, 2: 245.
[9] Moenke H. Mineral Spektren. Berlin, Germany: Academie Verlag, 1962.
[10] Akhmanova M V. Zhurnal Strukturnoi Khimii, 1962, 3: 28.
[11] Plyusnina I I, Kharitonov Y A. Zhurnal Strukturnoi Khimii, 1963, 4(4): 555.
[12] Weir C E. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 1966, 70A(2): 153.
[13] Suknev V S, Brovkin A A. Zhurnal Prikladnoi Spektroskopii, 1970, 12(2): 248.
[14] Marincea S. The Canadian Mineralogist, 2001, 39: 111.
[15] Galuskina I O, Kadiyski M, Armbruster T, et al. European Journal of Mineralogy, 2008, 20(5): 951.
[16] Frost R L, Scholz R, Lápez A, et al. Journal of Molecular Structure, 2015, 1089: 20.
[17] Armbruster T, Danisi R M. Highlights in Mineralogical Crystallography. Berlin: De Gruyter, 2016.
[18] Bilohuščin V, Uher P, Koděra P, et al. Mineralogy and Petrology, 2017, 111: 643.
[19] Wang Y, He M, Yan W, et al. Minerals, 2020, 10(3): 220.
[20] Peng B, He M, Yang M, et al. Ore Geology Reviews, 2022, 150: 105167.
[21] Chen Y, Chen Y, Liu Q, et al. Solid Earth Sciences, 2023, 8: 49.
[22] Liu X, Li H, He M. Solid Earth Sciences, 2024, 9: 100166.
[23] Dawson P, Hadfield C D, Wilkinson G R. Journal of Physics and Chemistry of Solids, 1973, 34(7): 1217.
[24] Gui W, Zhao C, Liu J. Chinese Physics Letters, 2021, 38(3): 038101.
[25] Kroumova E, Aroyo M I, Perez-Mato J M, et al. Phase Transitions, 2003, 76(1-2): 155.
[26] Li D, Peng M, Bancroft G M. The Canadian Mineralogist, 1994, 32(1): 81.
[27] Wopenka B, Freeman J J, Grew E S. American Mineralogist, 1999, 84(4): 550.
[28] LIU Jing-dang(刘敬党). Geology of Chemical Minerals(化工矿产地质), 1996, 18(3): 207.
[29] Aleksandrov S M. Geochemistry International, 2008, 46(6): 578.
[30] Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. New York: Wiley, 1978.
[31] Beran A, Voll D, Schneider H. EMU Notes in Mineralogy, 2004, 5: 189.
|
[1] |
CHEN Xin-gang1, 2, ZHANG Wen-xuan1, MA Zhi-peng1*, ZHANG Zhi-xian1, WAN Fu3, AO Yi1, ZENG Hui-min1. Improved Convolutional Neural Network Quantification of Mixed Fault Characterization Gases in Transformers Based on Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(04): 932-940. |
[2] |
YANG Bo, ZHANG Ya-ru, CHENG Bi-yao, LI Yu-wei, QU Peng-fei, TANG Hui, LIU Hai-bin, WANG Xiao-zhuo*. Investigation of Hydrogen Bonding in Aqueous Nitric Acid Solution Under Concentration Perturbation by Two-Dimensional Correlated Raman
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(04): 958-963. |
[3] |
ZHANG Wen-jie1, GAO Shan2, CAO Zhen-wei3, HAN Xiang-na1*. Analysis of Pigments of Polychrome Paintings From the Baoguang Hall of Prince Kung's Palace Museum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(04): 1028-1035. |
[4] |
LI Yi-nuo1, LIANG Xiao-rui1*, ZHANG Ji-lei1, LI Yin1, LI Xiao-dong2. Theoretical Calculation and Experimental Study on the Vibration Spectra of Ergosterol Peroxide[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(03): 623-630. |
[5] |
WANG Shu-dong1, 3*, WANG Ye1, 3, HOU Xian-fa4, GAO Ming-shun4, ZHANG Yan2*. DFT and Experimental Study on Raman Spectroscopy of Ketamine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(03): 672-677. |
[6] |
NI Qin-ru1, OU Quan-hong1*, SHI You-ming2, LIU Chao3, ZUO Ye-hao1, ZHI Zhao-xing1, REN Xian-pei4, LIU Gang1. Diagnosis of Lung Cancer by Human Serum Raman Spectroscopy
Combined With Six Machine Learning Algorithms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(03): 685-691. |
[7] |
WANG Wei-lin1, GUO Yi-xin1, JIN Wei-qi1, 2*, QIU Su1, HE Yu-qing1, GUO Zong-yu1, YANG Shu-ning2. Solar-Blind Ultraviolet Raman Spectroscopic Remote Detection System and Its Detection Experiments[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(03): 706-711. |
[8] |
YANG Xi-bao1, SONG Yu-hao2, 3, LÜ Hang2*, CHEN Shuang-long2, WANG Qiu-shi2, YAO Zhen4. Preparation and Luminescence Properties of Sm3+ Doped SiO2 Nanorods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(03): 712-716. |
[9] |
QIAN Xue-wen1, LIU Xian-yu1, 2, 3*, LI Jing-jing1, YUAN Ye4. Study on the Vibrational Spectra of Pyromorphite From Guilin of Guangxi Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(03): 735-741. |
[10] |
HAN En-ze1, LI Zhi-hang1, 2*, CHENG Hong-fei1, XIONG Kun1. Inhabitation Mechanism of Calcium Lignosulfonate on Serpentine During Ascharite Flotation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(03): 784-788. |
[11] |
YU Chang-you1, CHENG Peng1*, LI Jie2, SONG Wen-yan2, WANG Chao-zong3, QI Xin-hua3, CHE Qing-feng3*, CHEN Shuang3, XU Zhen-yu4. Measurement of Aero-Engine Combustion Field Concentration and
Temperature by Dual Polarization Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(03): 878-884. |
[12] |
MA Hu-yishan1, 2, PAN Nan2, LIN Zhen-yu3, CHEN Xiao-ting2, WU Jing-na4, ZHANG Fang1*, LIU Zhi-yu2*. Research Progress on the Vibrational Spectroscopy Technology in the Quality Detection of Fish Oil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(02): 301-311. |
[13] |
XU Jia-yang1, MENG Si-yu2, ZHANG Zhi-wei2, CHEN Hong-yi2, MA Yu-ting2, WANG Ce2, QI Xiang-dong2, HU Hui-jie2*, SONG Yi-zhi2*. Fast and Adaptive Raman Spectroscopy Baseline Correction Algorithm Based on the Principle of the Minus-Weighted Iterative Adjustment Least Square Method (MWIALS)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(02): 344-350. |
[14] |
HUANG Yu-xuan, WANG Ya-lin, GAO Jin-jin, WANG Xiao-yu, WANG Shi-xia*. Study on the Effect of Different Ratios of Pb Doping on the High-Pressure Structure and Electrical Properties of Tin Dioxide[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(02): 364-370. |
[15] |
MA Xiao-hui1, LIU Jia-chen1, WU Jin-yu1, MAO Jing1, HU Xiao-xia2, GUO An-ran1. Application of in Situ X-Ray Diffraction Spectroscopy in Crystal Structure Analysis of High-Entropy Pseudobrookite Ceramics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(02): 443-447. |
|
|
|
|