|
|
|
|
|
|
Research Progress on the Vibrational Spectroscopy Technology in the Quality Detection of Fish Oil |
MA Hu-yishan1, 2, PAN Nan2, LIN Zhen-yu3, CHEN Xiao-ting2, WU Jing-na4, ZHANG Fang1*, LIU Zhi-yu2* |
1. College of Biological Sciences and Engineering, Fuzhou University, Fuzhou 350108, China
2. National Research and Development Center for Marine Fish Processing(Xiamen), Fisheries Research Institute of Fujian, Xiamen 361013, China
3. MOE Key Laboratory of Analysis and Detection for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, China
4. Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medical College, Xiamen 361023, China
|
|
|
Abstract Fish oil is rich in ω-3 polyunsaturated fatty acids, such as Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA), which positively prevent and treat cardiovascular diseases. Its efficacy is directly related to its quality. With the increasing demand for the quality and safety of fish oil from consumers, the development and application of rapid detection technology are of great significance for monitoring the production process of fish oil and ensuring the quality of the products. Spectra are closely related to the composition and content of substances. By analyzing the spectral characteristics of the substance, information that reflects its molecular structure can be obtained, thereby achieving qualitative and quantitative analysis of the compound. Compared to traditional chemical detection methods, spectral technology offers the advantages of high efficiency, non-destructiveness, minimal pre-treatment, and environmental friendliness, making them promising in the field of fish oil quality detection. In this paper, near-infrared (NIR), mid-infrared (MIR) and Raman spectroscopy (RS) techniques and their application principles in fish oil quality detection were described; the conventional procedures for establishing spectroscopic prediction models were illustrated; various chemometric methods used for pre-processing of spectral information and model calibration were demonstrated; recent research advances and application progresses of NIR, MIR and RS in the detection of nutritional components (fatty acids, phospholipids and astaxanthin, etc.), quality indicators (acid value, peroxide value, etc.) and impurity analysis of fish oil were summarized. Additionally, the application prospects and existing problems of modern spectroscopic techniques combined with chemometrics in the rapid and non-destructive quality detection of fish oil were discussed. The goal is to extend laboratory research to practical production, thereby promoting the sustainable development of the fish oil industry in China.
|
Received: 2023-12-11
Accepted: 2024-06-14
|
|
Corresponding Authors:
ZHANG Fang, LIU Zhi-yu
E-mail: 13906008638@163.com;zhangfang921@gmail.com
|
|
[1] Dasilva G, Pazos M, García-Egido E, et al. Food Chemistry, 2016, 205(1): 196.
[2] Holub A, Abdolahi A, Tu X, et al. Journal of Clinical Lipidology, 2017, 11(3): 792.
[3] Zhang Q, Wang W, Wu S F, et al. Food Science, 2023, 44(12): 208.
[4] Jacobsen C, Warncke S A, Hansen S H, et al. Foods, 2022, 11(7): 905.
[5] Bioucas-Dias, Jose M, Figueiredo, et al. Applied Spectroscopy: Society for Applied Spectroscopy, 2017, 71(6): 1148.
[6] CHU Xiao-li(褚小立). Chemometrics Methods in Modern Spectral Analysis(现代光谱分析中的化学计量学方法). Beijing: Chemical Industry Press(北京: 化学工业出版社), 2022. 36.
[7] Wójcicki K, Khmelinskii I, Sikorski M, et al. Food Chemistry, 2015, 187: 416.
[8] El-Abassy R M, Donfack P, Materny A. Journal of Raman Spectroscopy, 2009, 40(9): 1284.
[9] CHU Xiao-li, LI Ya-hui(褚小立, 李亚辉). Practical Handbook of Near-Infrared Spectroscopy(近红外光谱实战宝典). Beijing: Chemical Industry Press(北京:化学工业出版社), 2023. 6.
[10] Pinto R C, Locquet N, Eveleigh L, et al. Food Chemstry,2010, 120(4): 1170.
[11] WENG Shi-fu(翁诗甫). Fourier Transform Infrared Spectral Analysis(傅里叶变换红外光谱分析). Beijing: Chemical Industry Press(北京:化学工业出版社), 2010, 96.
[12] LIU Ping, QI Xiao-bin, LIU Yi-heng, et al(刘 平, 齐晓彬, 刘毅恒, 等). Chinese Science Bulletin(科学通报), 2023, 68(27): 3634.
[13] Larkin Peter. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation. Elsevier, 2018. 135.
[14] ZHANG Shu-lin(张树霖). Raman Spectroscopy and Its Application in Nanostructures. Part Ⅰ, Fundamentals of Raman Spectroscopy(拉曼光谱学及其在纳米结构中的应用. 上册, 拉曼光谱学基础). Translated by XU Ying-ying(许应瑛,译). Beijing: Peking University Press(北京大学出版社), 2017. 150.
[15] Du Z, Tian W, Tilley M, et al. Comprehensive Reviews in Food Science and Food Safety, 2022, 21(3): 2956.
[16] Mishra P, Biancolillo A, Roger J M, et al. TrAC Trends in Analytical Chemistry, 2020, 132(1): 116045.
[17] MIAO Jun-kui, ZHANG Ya-ting, JIN Yong-pei, et al(苗钧魁, 张雅婷, 金永霈, 等). Science and Technology of Food Industry(食品工业科技), 2022, 43(14): 8.
[18] Garcia Martín J F. International Journal of Food Science & Technology, 2015, 50(6): 1461.
[19] Koshoubu J, Iwata T, Minami S. Applied Sectroscopy, 2000, 54(1): 148.
[20] Albanell E, Martinez M, De Marchi M, et al. Journal of Food Composition and Analysis, 2021, 97: 103763.
[21] Cheng Junhu, Sun Dawen Food Engineering Reviews, 2017, 9: 10.1007/S12393-016-9147-1.
[22] Awotunde O, Roseboom N, Cai J, et al. Analytical Chemistry, 2022, 94(37): 12586.
[23] Brereton R G, Lloyd G R. Analyst, 2010, 135(2): 230.
[24] Hernandez N, Talavera l, Dago A, et al. Journal of Chemometrics, 2008, 22(11-12): 686.
[25] Heidary-Sharifabad A, Zarchi M S, Emadi S, et al. British Food Journal, 2021, 123(11): 3592.
[26] Jana D, Patil J, Herkal S, et al. Mechanical Systems and Signal Processing, 2022, 169: 108723.
[27] Cui C, Fearn T. Chemometrics & Intelligent Laboratory Systems, 2018, 182: 9(doi: 10.1016/j.chemolab.2018.07.008).
[28] RAN Si, DING Jian-li, GE Xiang-yu, et al(冉 思, 丁建丽, 葛翔宇, 等). Laser & Optoelectronics Progress(激光与光电子学进展), 2020, 57(24): 242803.
[29] CHEN Pu, DAI Jia-wei, LI Jing-yan, et al(陈 瀑, 戴嘉伟, 李敬岩, 等). Chemical Reagents(化学试剂), 2023, 45(6): 105.
[30] Lee L C, Liong C, Jemain A, et al. Chemometrics and Intelligent Laboratory Systems, 2017, 163(1): 64.
[31] Ledoux M, Juanéda P, Sébédio Jean-Louis. European Journal of Lipid Science & Technology, 2007, 109(9):891.
[32] Li Y, Dai L, Liu D, et al. Catalysts, 2022, 12(7): 795.
[33] Zuluaga M, Gueguen V, Letourneur D, et al. Chemico-Biological Interactions, 2018, 279: 145.
[34] WANG Nan, YU Hong-wei, LI Jun-guo, et al(王 楠, 于宏威, 李军国, 等). China Oils and Fats(中国油脂), 2017, 42(10): 138.
[35] Cascant M M, Breil C, Fabiano-Tixier A S, et al. Food Chemistry, 2017, 239(15): 865.
[36] Nieto-Ortega S, Olabarrieta I, Saitua E, et al. Foods, 2022, 11(8): 1092.
[37] Merwe S V D, Manley M, Wicht M. Journal of Near Infrared Spectroscopy, 2018, 26(4): 245.
[38] Giese E, Winkelmann O, Rohn S, et al. Food Research International, 2018, 106: 116.
[39] Endo Y, Tagiri-Endo M, Kimura K. Journal of Food Science, 2005, 70(2): C127.
[40] Karoui R, Lefur B, Grondin C, et al. International Journal of Food Science & Technology, 2007, 42(1): 57.
[41] ZHANG Yu, TAN Li-hong, CAO Fang, et al(张 瑜, 谈黎虹, 曹 芳, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2013, 33(6): 1532.
[42] Klaypradit W, Kerdpiboon S, Singh R K. Food and Bioprocess Technology, 2011, 4(3): 475.
[43] Xu L Z, Gao F, Yang Z L, et al. International Journal of Agricultural and Biological Engineering, 2016, 9(3): 179.
[44] Gao B, Xu S, Han L J, et al. Food Chemistry, 2020, 343(3): 128420.
[45] Bekhit M Y, Grung B, Mjos S A. Applied Spectroscopy, 2014, 68(10): 1190.
[46] Hall D W, Marshall S N, Gordon K C, et al. Lipids, 2016, 51(1): 139.
[47] ZHANG Zhao-hui, YAN Hua, GU Qiang, et al(张朝晖, 严 华, 顾 强, 等). Journal of Food Safety and Quality(食品安全质量检测学报), 2015, 6(11): 4324.
[48] HUANG Xiu-li, ZHAN Yun-li, LI Jing, et al(黄秀丽, 詹云丽, 李 菁, 等) Science and Technology of Food Industry(食品工业科技), 2016, 37(20): 59.
[49] Killeen D P, Card A, Gordon K C, et al. Applied Spectroscopy, 2020, 74(3): 365.
[50] Jiang H, He Y C, Xu W D, et al. Food Analytical Methods, 2021, 14(9): 1826.
[51] Ahmmed F, Fuller I D, Killeen D P, et al. ACS Food Science & Technology, 2021, 1(4): 570.
|
[1] |
XU Jia-yang1, MENG Si-yu2, ZHANG Zhi-wei2, CHEN Hong-yi2, MA Yu-ting2, WANG Ce2, QI Xiang-dong2, HU Hui-jie2*, SONG Yi-zhi2*. Fast and Adaptive Raman Spectroscopy Baseline Correction Algorithm Based on the Principle of the Minus-Weighted Iterative Adjustment Least Square Method (MWIALS)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(02): 344-350. |
[2] |
HUANG Yu-xuan, WANG Ya-lin, GAO Jin-jin, WANG Xiao-yu, WANG Shi-xia*. Study on the Effect of Different Ratios of Pb Doping on the High-Pressure Structure and Electrical Properties of Tin Dioxide[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(02): 364-370. |
[3] |
XIAO Zhong-liang, YUAN Rong-yao, FU Zhuang, LIU Cheng, YIN Bi-lu, XIAO Min-zhi, ZHAO Ting-ting, KUANG Yin-jie, SONG Liu-bin*. Study on the Aging Behavior of Transformer Oil Based on Machine
Learning and Infrared Spectroscopy Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(02): 434-442. |
[4] |
WANG Tian1, YANG Shao-xiong1, XIA Sen-wei1, WANG Fen1, WANG Ying1, SUN Jian-xing2, SUN Li2, LI Qiang3, LUO Hong-jie1, 4, ZHU Jian-feng1. Research on the Chemical and Mineral Composition of Jian Wares in the Song Dynasty Using Multiple Spectroscopic Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(02): 448-455. |
[5] |
LIU Wen-bo, LI Han, XU Yuan-cong, LIU Meng-dong, WANG Hui-qin, LIN Tai-feng, ZHENG Da-wei, ZHANG Ping*. Rapid Detection of Bacterial Conjunctivitis Pathogens Using SERS@Au Microarray Chip[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(02): 476-482. |
[6] |
QIAO Lu1, 2, LIU Yong-hong1, 2, XU Ke-ke1, 2, YU Huan-ying1, CHEN Yuan-jie3, YANG Lin-lin1, 2, DONG Cheng-ming1, 2*, WANG Lei1*. Analysis of Mid-Infrared Spectral Characteristics of Soils Cultivated With Salvia Miltiorrhiza at Different Intervals Based on Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(02): 483-491. |
[7] |
DENG Yun1, 2, WANG Jun1, 2, CHEN Shou-xue2*, SHI Yuan-yuan3. Hyperspectral Inversion Model of Forest Soil Organic Matter Based on PCA-DBO-SVR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(02): 569-583. |
[8] |
LIU Tao, HUANG Yu-xuan, GAO Jin-jin, WANG Shi-xia*. Study of Structural Stability and Electrical Properties Under High Pressure of SnO[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(01): 82-87. |
[9] |
ZHOU Yu-kun, CHEN Xiao-jing, XIE Zhong-hao, SHI Wen*, YUAN Lei-ming, CHEN Xi, HUANG Guang-zao. A Combinatorial Optimization Strategy for Near-Infrared Spectral Data Preprocessing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(01): 52-58. |
[10] |
WANG Yi-jia1, WU Bin-bin1, LIU Jing-yi1, FANG Lei-ming2, LIU Ben-qiong2, LEI Li1*. The Effect of Non-Hydrostatic Pressure Environments on the High-Pressure Raman Phonons for U3O8[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(01): 59-65. |
[11] |
WANG Shuo1, 2, XIE Zhen-kun1, 2, WEI Zhi-peng1*. DMD-Based Hadamard Transform Near-Infrared Spectrometer Design and Implementation of Fast Processing System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(01): 133-138. |
[12] |
LI Lin-xiao1, TAN Yu-chen1*, XIAN Yi-heng1, TIE Fu-de1, 2, SUN Man-li1, AI Hao1, LIANG Yun1, SUN Feng1. Mineralogical and Spectroscopic Characterisation of Multicoloured Pigments From Sanwei Moutain at Dunhuang[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(01): 152-159. |
[13] |
LU Mei-hong1, ZHANG Fan1, BAO Ya-ting2, WANG Zhi-jun1, LEI Hai-ying3, WANG Xiang-yu1, GAO Peng-hui1. Research on Traditional Chinese Medicine Detection Based on Fluorescence Spectroscopy and Raman Spectroscopy Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(01): 139-145. |
[14] |
ZHENG Chuan-xin1, LIU Xiao-meng2*, LI Quan1, MENG Zheng3, WANG En-ning3, SI Xing-yu4, WANG Jian-nian4, LI Zhen-lin4, WANG Hong-qiu4. Online and Multi-Component Analysis of Converter Flue Gas by Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(01): 146-151. |
[15] |
CHEN Xu, CAO Si-heng, YANG Ren-min, CHEN Qiu-yu, LI Jian-guo, XU Lu*. Using Spectroscopy to Predict Soil Properties on Coastal Wetlands Invaded by Spartina Alterniflora[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(01): 197-203. |
|
|
|
|