|
|
|
|
|
|
Identification Method of Pollen Typhae Processed Products Based on Convolutional Neural Network and Voting Mechanism |
CHEN Cheng-wu1, WANG Tian-shu1*, HU Kong-fa1, BAO Bei-hua2, YAN Hui2, YANG Xi-chen3 |
1. College of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210029, China
2. College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, China
3. School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
|
|
|
Abstract Carbonized Typhae Pollen (CTP) is processed by Pollen Typhae. It has various effects such as hemostasis, removing blood stasis and treating stranguria. It has been widely used in clinical anti-thrombosis, wounds and bleeding. However, in the process of CTP, the carbonization is often too light or too heavy, resulting in different degrees of CTP, mainly for light carbonization, standard carbonization and heavy carbonization CTP. Due to the different degrees of carbonization, the coagulation effect of CTP is different. The standard CTP has the best effect. At present, the identification of CTP mainly relies on eyes and experience. The manual method is challenging to distinguish the standard CTP because it is inefficient, volitional, and unstable. Therefore, to effectively identify CTP with different degrees of carbonization, a near-infrared identification method based on Convolutional Neural Network (CNN) and the voting mechanism is proposed. This method innovatively combines deep learning and machine learning algorithms, effectively utilizes the powerful representation extraction ability of CNN, and applies voting decisions to improve the generalization ability and robustness of the prediction model. The near-infrared spectrum of CTP is firstly obtained. Then the high-order features of the spectrum processed by four different pre-processing methods are extracted by CNN. Next, the prediction results are calculated. The weights of four pre-processing methods are allocated according to the accuracy and loss to get the prediction model. Finally, the model combines the four prediction results with the weights to identify the CTP with different degrees of carbonization. The experimental results show that the proposed method can effectively distinguish the CTP with different degrees of carbonization. When the training set occupies 80%, the test accuracy is up to 95.4%. Compared with CNN, Linear Discriminant Analysis (LDA) and Standard Normal Variable (SNV)-LDA, the proposed method improves the prediction accuracy by 8.6%, 4.3% and 2.6%, respectively. At the same time, the proposed method is robust. When the proportion of the training set occupies more than 70%, the test accuracy is higher than 90%. When the proportion of the training set only occupies 10%, the prediction accuracy can still reach about 80%.
|
Received: 2020-10-12
Accepted: 2022-09-13
|
|
Corresponding Authors:
WANG Tian-shu
E-mail: wangtianshu@njucm.edu.cn
|
|
[1] Xie Y, Zhou R R, Xie H L, et al. International Journal of Biological Macromolecules, 2019, 122: 1115.
[2] LIU Ya-chao, LI Yong-yu, PENG Yan-kun, et al(刘亚超, 李永玉, 彭彦昆, 等). Chinese Journal of Analytical Chemistry(分析化学), 2019, 47(5): 785.
[3] Schimleck L R, Antony F, Mora C, et al. Holzforschung, 2020, 74(1): 20.
[4] Correia R M, Domingos E, Flávia Tosato, et al. Analytical Methods, 2018, 10(6): 593.
[5] Unger R, Braun U, Fankhänel, et al. Computational Materials Science, 2019, 161: 223.
[6] Kartakoullis A, Comaposada J, Cruz-Carrión A, et al. Food Chemistry, 2019, 278: 314.
[7] Cui Y, Ge W, Li J, et al. Computers and Electronics in Agriculture, 2019, 158: 358.
[8] Mandrile L, Barbosa-Pereira L, Sorensen K M, et al. Food Chemistry, 2019, 292: 47.
[9] Krizhevsky A, Sutskever I, Hinton G E, et al. Communications of the ACM, 2017, 60(6): 84.
[10] Bapu J J, Florinabel D J, Robinson Y H, et al. Earth Science Informatics, 2019, 12(4): 525.
[11] Bacchi S, Oakden-Rayner L, Zerner T, et al. Stroke, 2019, 50(3): 758.
[12] Nogovitsyn N, Souza R, Muller M, et al. NeuroImage, 2019, 197: 589.
[13] Wartini N, Budiman M, Maryam M, et al. Geoderma, 2019, 352: 251.
[14] Xu J, Luo X, Wang G, et al. Neurocomputing, 2016, 191: 214.
[15] Gao M, Bao B, Cao Y, et al. Molecules, 2019, 24: 128.
|
[1] |
GAO Feng1, 2, XING Ya-ge3, 4, LUO Hua-ping1, 2, ZHANG Yuan-hua3, 4, GUO Ling3, 4*. Nondestructive Identification of Apricot Varieties Based on Visible/Near Infrared Spectroscopy and Chemometrics Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 44-51. |
[2] |
LI Xin-ting, ZHANG Feng, FENG Jie*. Convolutional Neural Network Combined With Improved Spectral
Processing Method for Potato Disease Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 215-224. |
[3] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[4] |
LAN Yan1,WANG Wu1,XU Wen2,CHAI Qin-qin1*,LI Yu-rong1,ZHANG Xun2. Discrimination of Planting and Tissue-Cultured Anoectochilus Roxburghii Based on SMOTE and Inception-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 158-163. |
[5] |
BAI Xue-bing1, 2, SONG Chang-ze1, ZHANG Qian-wei1, DAI Bin-xiu1, JIN Guo-jie1, 2, LIU Wen-zheng1, TAO Yong-sheng1, 2*. Rapid and Nndestructive Dagnosis Mthod for Posphate Dficiency in “Cabernet Sauvignon” Gape Laves by Vis/NIR Sectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3719-3725. |
[6] |
WANG Qi-biao1, HE Yu-kai1, LUO Yu-shi1, WANG Shu-jun1, XIE Bo2, DENG Chao2*, LIU Yong3, TUO Xian-guo3. Study on Analysis Method of Distiller's Grains Acidity Based on
Convolutional Neural Network and Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3726-3731. |
[7] |
HU Cai-ping1, HE Cheng-yu2, KONG Li-wei3, ZHU You-you3*, WU Bin4, ZHOU Hao-xiang3, SUN Jun2. Identification of Tea Based on Near-Infrared Spectra and Fuzzy Linear Discriminant QR Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3802-3805. |
[8] |
LIU Xin-peng1, SUN Xiang-hong2, QIN Yu-hua1*, ZHANG Min1, GONG Hui-li3. Research on t-SNE Similarity Measurement Method Based on Wasserstein Divergence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3806-3812. |
[9] |
LUO Li, WANG Jing-yi, XU Zhao-jun, NA Bin*. Geographic Origin Discrimination of Wood Using NIR Spectroscopy
Combined With Machine Learning Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3372-3379. |
[10] |
ZHANG Shu-fang1, LEI Lei2, LEI Shun-xin2, TAN Xue-cai1, LIU Shao-gang1, YAN Jun1*. Traceability of Geographical Origin of Jasmine Based on Near
Infrared Diffuse Reflectance Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3389-3395. |
[11] |
YANG Qun1, 2, LING Qi-han1, WEI Yong1, NING Qiang1, 2, KONG Fa-ming1, ZHOU Yi-fan1, 2, ZHANG Hai-lin1, WANG Jie1, 2*. Non-Destructive Monitoring Model of Functional Nitrogen Content in
Citrus Leaves Based on Visible-Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3396-3403. |
[12] |
HUANG Meng-qiang1, KUANG Wen-jian2, 3*, LIU Xiang1, HE Liang4. Quantitative Analysis of Cotton/Polyester/Wool Blended Fiber Content by Near-Infrared Spectroscopy Based on 1D-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3565-3570. |
[13] |
HUANG Zhao-di1, CHEN Zai-liang2, WANG Chen3, TIAN Peng2, ZHANG Hai-liang2, XIE Chao-yong2*, LIU Xue-mei4*. Comparing Different Multivariate Calibration Methods Analyses for Measurement of Soil Properties Using Visible and Short Wave-Near
Infrared Spectroscopy Combined With Machine Learning Algorithms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3535-3540. |
[14] |
KANG Ming-yue1, 3, WANG Cheng1, SUN Hong-yan3, LI Zuo-lin2, LUO Bin1*. Research on Internal Quality Detection Method of Cherry Tomatoes Based on Improved WOA-LSSVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3541-3550. |
[15] |
HUANG Hua1, LIU Ya2, KUERBANGULI·Dulikun1, ZENG Fan-lin1, MAYIRAN·Maimaiti1, AWAGULI·Maimaiti1, MAIDINUERHAN·Aizezi1, GUO Jun-xian3*. Ensemble Learning Model Incorporating Fractional Differential and
PIMP-RF Algorithm to Predict Soluble Solids Content of Apples
During Maturing Period[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3059-3066. |
|
|
|
|