|
|
|
|
|
|
NIR Spectral Classification of Lettuce Using Principal Component
Analysis Sort and Fuzzy Linear Discriminant Analysis |
WU Bin1, SHEN Jia-qi2, WANG Xin2, WU Xiao-hong3, HOU Xiao-lei2 |
1. Department of Information Engineering, Chuzhou Polytechnic, Chuzhou 239000, China
2. Institute of Talented Engineering Students, Jiangsu University, Zhenjiang 212013, China
3. School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
|
|
|
Abstract The storage time of lettuce is an important factor affecting the quality. The traditional way of detecting lettuce storage time mostly depends on artificial experience, so it lacks accuracy and reliability. This study aims to provide a fuzzy recognition model for spectral analysis of lettuce to identify the storage time of lettuce compared with other discriminant methods. For this objective, sixty samples of fresh lettuce bought in the local supermarket were prepared and stored in a refrigerator for later detection. These samples were detected by near-infrared spectroscopy (NIR). Firstly, the Antaris II NIR spectrometer (the wave number range: 10 000~4 000 cm-1) was utilized to collect the near-infrared spectral data of lettuce samples every 12 hours, and every sample detection was repeated three times, taking the average value as experiment data. Secondly,NIR spectra were preprocessed with multiple scatter correction (MSC) for decreasing reductant information. PCA and PCA Sort were used to further clear the useless data of NIR spectra and simplify the following classification of data. PCA Sort was based on PCA with sorting principal components and could improve the classification accuracy and help the FLDA extract features effectively. In this step, only the first fifteen components of PCA and PCA Sort were used to compress NIR spectra. Finally, fuzzy linear discriminant analysis (FLDA) algorithm and k-nearest neighbor (KNN) were performed to classify the previous low-dimensional data. The classification accuracy of the model based on PCA coupled with KNN was 43%, and that based on PCA as well as FLDA and KNN was 83%. The classification results in experiments showed that the discriminant of the model based on PCA, FLDA and KNN was significantly improved. Replacing PCA in the model with PCA Sort, the recognition accuracy of this new model based on the algorithm PCA Sortcoupled with FLDA and KNN was better and achieved 98.33%, which was higher than other classification algorithms. The classification results in experiments showed that PCA Sort plus FLDA and KNN could build an efficient discrimination model for the identification of the storage time of lettuce.
|
Received: 2021-07-19
Accepted: 2022-03-17
|
|
|
[1] Bie T Y, Xu J S, Yang L L, et al. Food Research and Development, 2012, 33(12): 205.
[2] Dong W, Cheng Z J, Wang X L, et al. International Journal of Food Sciences and Nutrition, 2011, 62(5): 537.
[3] Gao T T, Tian Y, Zhu Z W, et al. Trends in Food Science &Technology, 2020, 99: 311.
[4] Sun L, Yuan L M, Cai J R, et al. Food Analytical Methods, 2015, 8(4): 922.
[5] Sun J, Ge X, Wu X H, et al. Journal of Food Processing and Preservation, 2018, 41(6): e12816.
[6] Jiang S Y, Sun J, Zhou X, et al. Journal of Food Processing and Preservation, 2017, 40(4): e12510.
[7] Yu H D, Zuo S M, Xia G H, et al. Food Analytical Methods, 2020, 6: 1.
[8] Guidea A, Gaceanu R D, Pop H F. Studia Universitatis Babes-Bolyal Chemia, 2020, 65: 45.
[9] Shen Y J, Wu X H, Wu B, et al. Agriculture, 2021, 11: 275.
[10] Nayak S K, Panda M, Palai G. Optik, 2020, 212: 164675.
[11] Chen Q S, Cai J R, Wang X M, et al. LWT—Food Science and Technology, 2011, 2053: 2058.
[12] Wu X H, Zhou H X, Wu B, et al. Journal of Food Processing and Preservation, 2020, 44(8): e14561.
[13] Wu X H, Wu B, Sun J, et al. Journal of Food Process Engineering 2017, 40(2): e12355.
|
[1] |
GAO Feng1, 2, XING Ya-ge3, 4, LUO Hua-ping1, 2, ZHANG Yuan-hua3, 4, GUO Ling3, 4*. Nondestructive Identification of Apricot Varieties Based on Visible/Near Infrared Spectroscopy and Chemometrics Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 44-51. |
[2] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[3] |
WANG Cai-ling1,ZHANG Jing1,WANG Hong-wei2*, SONG Xiao-nan1, JI Tong3. A Hyperspectral Image Classification Model Based on Band Clustering and Multi-Scale Structure Feature Fusion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 258-265. |
[4] |
BAI Xue-bing1, 2, SONG Chang-ze1, ZHANG Qian-wei1, DAI Bin-xiu1, JIN Guo-jie1, 2, LIU Wen-zheng1, TAO Yong-sheng1, 2*. Rapid and Nndestructive Dagnosis Mthod for Posphate Dficiency in “Cabernet Sauvignon” Gape Laves by Vis/NIR Sectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3719-3725. |
[5] |
WANG Qi-biao1, HE Yu-kai1, LUO Yu-shi1, WANG Shu-jun1, XIE Bo2, DENG Chao2*, LIU Yong3, TUO Xian-guo3. Study on Analysis Method of Distiller's Grains Acidity Based on
Convolutional Neural Network and Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3726-3731. |
[6] |
HU Cai-ping1, HE Cheng-yu2, KONG Li-wei3, ZHU You-you3*, WU Bin4, ZHOU Hao-xiang3, SUN Jun2. Identification of Tea Based on Near-Infrared Spectra and Fuzzy Linear Discriminant QR Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3802-3805. |
[7] |
LIU Xin-peng1, SUN Xiang-hong2, QIN Yu-hua1*, ZHANG Min1, GONG Hui-li3. Research on t-SNE Similarity Measurement Method Based on Wasserstein Divergence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3806-3812. |
[8] |
LUO Li, WANG Jing-yi, XU Zhao-jun, NA Bin*. Geographic Origin Discrimination of Wood Using NIR Spectroscopy
Combined With Machine Learning Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3372-3379. |
[9] |
ZHANG Shu-fang1, LEI Lei2, LEI Shun-xin2, TAN Xue-cai1, LIU Shao-gang1, YAN Jun1*. Traceability of Geographical Origin of Jasmine Based on Near
Infrared Diffuse Reflectance Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3389-3395. |
[10] |
YANG Qun1, 2, LING Qi-han1, WEI Yong1, NING Qiang1, 2, KONG Fa-ming1, ZHOU Yi-fan1, 2, ZHANG Hai-lin1, WANG Jie1, 2*. Non-Destructive Monitoring Model of Functional Nitrogen Content in
Citrus Leaves Based on Visible-Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3396-3403. |
[11] |
FANG Zheng, WANG Han-bo. Measurement of Plastic Film Thickness Based on X-Ray Absorption
Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3461-3468. |
[12] |
HUANG Meng-qiang1, KUANG Wen-jian2, 3*, LIU Xiang1, HE Liang4. Quantitative Analysis of Cotton/Polyester/Wool Blended Fiber Content by Near-Infrared Spectroscopy Based on 1D-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3565-3570. |
[13] |
HUANG Zhao-di1, CHEN Zai-liang2, WANG Chen3, TIAN Peng2, ZHANG Hai-liang2, XIE Chao-yong2*, LIU Xue-mei4*. Comparing Different Multivariate Calibration Methods Analyses for Measurement of Soil Properties Using Visible and Short Wave-Near
Infrared Spectroscopy Combined With Machine Learning Algorithms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3535-3540. |
[14] |
KANG Ming-yue1, 3, WANG Cheng1, SUN Hong-yan3, LI Zuo-lin2, LUO Bin1*. Research on Internal Quality Detection Method of Cherry Tomatoes Based on Improved WOA-LSSVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3541-3550. |
[15] |
HUANG Hua1, LIU Ya2, KUERBANGULI·Dulikun1, ZENG Fan-lin1, MAYIRAN·Maimaiti1, AWAGULI·Maimaiti1, MAIDINUERHAN·Aizezi1, GUO Jun-xian3*. Ensemble Learning Model Incorporating Fractional Differential and
PIMP-RF Algorithm to Predict Soluble Solids Content of Apples
During Maturing Period[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3059-3066. |
|
|
|
|