|
|
|
|
|
|
Detection of Sorghum-Sudan Grass Seed Germination Rate Based on Near Infrared Spectroscopy |
HUI Yun-ting1, WANG De-cheng1, TANG Xin2, PENG Yao-qi1, WANG Hong-da1, ZHANG Hai-feng1, YOU Yong1* |
1. College of Engineering, China Agricultural University, Beijing 100083, China
2. Shandong Agriculture and Engineering University, Ji’nan 250100, China
|
|
|
Abstract Sorghum-Sudan Grass is rich in crude protein and carbohydrate, suitable for silage treatment. High-quality seeds are a prerequisite for animal husbandry development, and germination rate is one of the most conventional indicators to test the seed quality. Therefore, testing and screening the germination rate of the seeds prior to sowing is essential. The germination test method is currently used to detect seed germination rate, which has a long cycle and high cost. In this study, a rapid and non-destructive method based on NIR was proposed to detect the germination rate of sorghum-sudangrass seeds. The near-infrared diffuse reflectance spectra of the seed samples were collected with 1-Der and 2-Der processing. Moreover, comparative analysis of the parameter values obtained for R2c, R2p, RESEC and RMSEP was also performed. The support vector machine (SVM) was used for modeling, and the LIBSVM software package in Matlab was used to realize the SVM training and detection process to detect the seeds of sorghum-sudangrass seed with different germination rates. Using the Unity scientific 2600 XT Near-infrared spectrometer, 100 groups of sorghum-sudangrass seeds from different provinces were selected as samples. Before the experiment, the broken seeds and seeds that did not germinate were removed, and the germination test was carried out in the incubator. The germination rate of 100 samples was obtained, and the germination rate ranged from 41% to 64%. The seed samples were spectroscopically scanned and were randomly divided into calibration set (70 samples) and test set (30 samples). In this paper, the 1-Der and 2-Der method was used to preprocess the spectrum of sorghum-sudangrass seeds. SVM modeled the preprocessed data, and its parameters were analyzed. The results showed that the correlation coefficients of the training set (R2c) and test set (R2p) were 0.94 and 0.92 respectively, and the root mean square error of correction (RMSEC) and root mean square error of prediction (RMSEP) were 0.21 and 0.25 respectively, which reflected that the model was the best when the 1-Der was used to preprocess the seed data. When c=2 896.309 4, g=0.5, the detection accuracy of the test set was 96.666 7% (29/30) by using Rbf core functions of SVM modeling. These results suggested that the model was feasible to predict the seed germination rate, and could be used as one of the rapid and non-destructive detection methods for the preliminary detection of seed germination rate of sorghum-sudangrass could effectively promote the seed production.
|
Received: 2021-01-04
Accepted: 2021-04-08
|
|
Corresponding Authors:
YOU Yong
E-mail: youyong@cau.edu.cn
|
|
[1] Peng J, Kim M, Sung K. Agriculture, 2020, 10(4): 137.
[2] WU Jing-zhu,DONG Wen-fei,LIU Qian, et al(吴静珠, 董文菲, 刘 倩, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2015, 31(s2): 272.
[3] Zhou S, Sun L J, Xing W, et al. Infrared Physics & Technology, 2020, 108.
[4] Lin J, Yu L, Li W, et al. Applied Spectroscopy, 2018, 72(1): 611.
[5] SUN Tong,WU Yi -qing,LI Xiao-zhen, et al(孙 通,吴宜青,李晓珍, 等). Acta Optica Sinica(光学学报), 2015,35(6): 350.
[6] Zhu D, Wang K, Zhang D, et al. Sensor Letters, 2011, 9(3): 1144.
[7] GAO Tong, WU Jing-zhu, MAO Wen-hua, et al(高 彤, 吴静珠, 毛文华, 等). Transations of the Chinese Society for Agricultural Machinery(农业机械学报),2019, 50(S1): 399.
[8] Peiris K H S, Bean S R, Jagadish S V K. Cereal Chemistry, 2020, 97(5): 1066.
[9] ZHU Long-jie, ZHANG Hua, ZHUANG Ya-dong, et al(朱龙杰,张 华,庄亚东,等). Tobacco Science & Technology(烟草科技),2017,50(9):55.
[10] Femenias A, Gatius F, Ramos A J, et al. Food Chemistry, 2020,2(341): 128206.
[11] Amigo J M, Alvarez A D O, Engelsen M M, et al. Food Chemistry, 2016, 208: 318.
[12] JIN Wen-ling,CAO Nai-liang,ZHU Ming-dong, et al(金文玲,曹乃亮,朱明东, 等). Chinese Optics(中国光学), 2020, 13(5): 1032.
[13] ZHANG Ya-kun,LUO Bin,SONG Peng, et al(张亚坤,罗 斌,宋 鹏, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2018, 34(18): 195.
[14] Zhang J, Dai L M, Cheng F. Molecules, 2019, 24(1): 149.
[15] WANG Xiang-yu,ZHU Chen-guang,FU Ze-tian, et al(王翔宇,朱晨光,傅泽田, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2019, 39(6): 1864.
|
[1] |
GAO Feng1, 2, XING Ya-ge3, 4, LUO Hua-ping1, 2, ZHANG Yuan-hua3, 4, GUO Ling3, 4*. Nondestructive Identification of Apricot Varieties Based on Visible/Near Infrared Spectroscopy and Chemometrics Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 44-51. |
[2] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[3] |
CHENG Hui-zhu1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, MA Qian1, 2, ZHAO Yan-chun1, 2. Genetic Algorithm Optimized BP Neural Network for Quantitative
Analysis of Soil Heavy Metals in XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3742-3746. |
[4] |
HU Cai-ping1, HE Cheng-yu2, KONG Li-wei3, ZHU You-you3*, WU Bin4, ZHOU Hao-xiang3, SUN Jun2. Identification of Tea Based on Near-Infrared Spectra and Fuzzy Linear Discriminant QR Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3802-3805. |
[5] |
LIU Xin-peng1, SUN Xiang-hong2, QIN Yu-hua1*, ZHANG Min1, GONG Hui-li3. Research on t-SNE Similarity Measurement Method Based on Wasserstein Divergence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3806-3812. |
[6] |
SHEN Si-cong, ZHANG Jing-xue, CHEN Ming-hui, LI Zhi-wei, SUN Sheng-nan, YAN Xue-bing*. Estimation of Above-Ground Biomass and Chlorophyll Content of
Different Alfalfa Varieties Based on UAV Multi-Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3847-3852. |
[7] |
BAI Xue-bing1, 2, SONG Chang-ze1, ZHANG Qian-wei1, DAI Bin-xiu1, JIN Guo-jie1, 2, LIU Wen-zheng1, TAO Yong-sheng1, 2*. Rapid and Nndestructive Dagnosis Mthod for Posphate Dficiency in “Cabernet Sauvignon” Gape Laves by Vis/NIR Sectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3719-3725. |
[8] |
WANG Qi-biao1, HE Yu-kai1, LUO Yu-shi1, WANG Shu-jun1, XIE Bo2, DENG Chao2*, LIU Yong3, TUO Xian-guo3. Study on Analysis Method of Distiller's Grains Acidity Based on
Convolutional Neural Network and Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3726-3731. |
[9] |
LUO Li, WANG Jing-yi, XU Zhao-jun, NA Bin*. Geographic Origin Discrimination of Wood Using NIR Spectroscopy
Combined With Machine Learning Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3372-3379. |
[10] |
ZHANG Shu-fang1, LEI Lei2, LEI Shun-xin2, TAN Xue-cai1, LIU Shao-gang1, YAN Jun1*. Traceability of Geographical Origin of Jasmine Based on Near
Infrared Diffuse Reflectance Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3389-3395. |
[11] |
YANG Qun1, 2, LING Qi-han1, WEI Yong1, NING Qiang1, 2, KONG Fa-ming1, ZHOU Yi-fan1, 2, ZHANG Hai-lin1, WANG Jie1, 2*. Non-Destructive Monitoring Model of Functional Nitrogen Content in
Citrus Leaves Based on Visible-Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3396-3403. |
[12] |
HUANG Meng-qiang1, KUANG Wen-jian2, 3*, LIU Xiang1, HE Liang4. Quantitative Analysis of Cotton/Polyester/Wool Blended Fiber Content by Near-Infrared Spectroscopy Based on 1D-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3565-3570. |
[13] |
HUANG Zhao-di1, CHEN Zai-liang2, WANG Chen3, TIAN Peng2, ZHANG Hai-liang2, XIE Chao-yong2*, LIU Xue-mei4*. Comparing Different Multivariate Calibration Methods Analyses for Measurement of Soil Properties Using Visible and Short Wave-Near
Infrared Spectroscopy Combined With Machine Learning Algorithms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3535-3540. |
[14] |
KANG Ming-yue1, 3, WANG Cheng1, SUN Hong-yan3, LI Zuo-lin2, LUO Bin1*. Research on Internal Quality Detection Method of Cherry Tomatoes Based on Improved WOA-LSSVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3541-3550. |
[15] |
HUANG Hua1, LIU Ya2, KUERBANGULI·Dulikun1, ZENG Fan-lin1, MAYIRAN·Maimaiti1, AWAGULI·Maimaiti1, MAIDINUERHAN·Aizezi1, GUO Jun-xian3*. Ensemble Learning Model Incorporating Fractional Differential and
PIMP-RF Algorithm to Predict Soluble Solids Content of Apples
During Maturing Period[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3059-3066. |
|
|
|
|