|
|
|
|
|
|
Classification of Camouflages Using Hyperspectral Images Combined With Fusing Adaptive Sparse Representation and Correlation Coefficient |
ZHOU Bing, LI Bing-xuan*, HE Xuan, LIU He-xiong,WANG Fa-zhen |
Department of Opto-electronics, Army Engineering University of PLA, Shijiazhuang 050000,China |
|
|
Abstract In recent years,with the rapid development of military reconnaissance and identification technology,military equipment used for reconnaissance and detection has gradually achieved high-precision levels. The troops with high-tech reconnaissance methods can often perform precise strikes on targets, significantly reducing the cost of victory in war. The more mature hyperspectral imaging methods include satellite remote sensing and high-altitude aerial imaging technologies. The two imaging methods have roughly the same reconnaissance time and the same direction of incident light. Therefore, the spectral curve of the ground object is relatively fixed. However, under land-based conditions, the spectral curve of the ground feature is prominently affected by the imaging environment, so the method of hyperspectral image classification is suitable for land-based conditions should be studied. In land-based hyperspectral images, the identification and classification of each feature are beneficial to the subsequent identification and processing of camouflage targets. Different from traditional remote sensing spectral image classification, the classification of hyperspectral camouflage targets under land-based conditions is not only difficult to obtain training samples, and in hyperspectral images under land-based conditions, the correlation between training samples under land-based conditions, the correlation between training samples varies with the target type. The parameters of the detector and the imaging environment are constantly changing. Classification methods based on sparse representation have been widely used to deal with image problems and various machine vision problems, including hyperspectral image classification. For land-based hyperspectral images, sparse coding strategies based on fixed norm constraints cannot be adapted under land-based conditions, hyperspectral imaging. For land-based hyperspectral images, sparse coding strategies based on fixed norm constraints cannot be adapted. Under land-based conditions, hyperspectral imaging is a changeable environment, and adaptive sparse representation can adaptively adjust norm constraints based on sample correlation. Correlation coefficients can improve the image’s recognition accuracy of destructive factors (shadows, noise points, etc.). This paper proposes a new hyperspectral image classification method by introducing regularization parameters, fusing adaptive sparse representation and correlation coefficients. In order to verify the effectiveness of the proposed method, camouflage objects were set in the green vegetation background and the desert background, and different classification methods classified the images. The experimental results show that the method in this paper is obvious, whether it is classification accuracy or classification consistency. The advantages of this can be applied to the classification of hyperspectral images under land-based conditions, providing a theoretical basis for camouflage reconnaissance and identification.
|
Received: 2020-09-10
Accepted: 2020-12-30
|
|
Corresponding Authors:
LI Bing-xuan
E-mail: 906975318@qq.com
|
|
[1] PENG Yao-qi, XIAO Ying-xin, ZHENG Yong-jun, et al(彭要奇, 肖颖欣, 郑永军, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2020, 40(5): 1356.
[2] Zhang Q, Li B. Discriminative K-SVD for Dictionary Learning in Face Recognition, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, doi: 10.1109/CVPR.2010.5539989.
[3] HUANG Chuan-lu, CHAO Kun, MAO Yun-zi(黄传禄,晁 坤,毛云志). Chinese Journal of Radio Science(电波科学学报),2014,29(1):150.
[4] Zhu T, Bao W, Shen X, et al. Journal of Applied Remote Sensing, 2020, 14(2): 1.
[5] Akila D, Bhaumik A, Doss S, et al. Hyperspectral Image Classification by Means of Suprepixel Representation with KNN. in: Intelligent Computing and Innovation on Data Science,Lecture Notes in Network and Systems Vol 118. Springer, 2020, https://doi.org/10.1007/978-981-15-3284-9_42.
[6] Yang W, Peng J, Sun W, et al. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 12(12): 5023. |
[1] |
WEI Zi-kai, WANG Jie, ZHANG Ruo-yu, ZHANG Meng-yun*. Classification of Foreign Matter in Cotton Using Line Scan Hyperspectral Transmittance Imaging[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3230-3238. |
[2] |
DONG Jian-jiang1, TIAN Ye1, ZHANG Jian-xing2, LUAN Zhen-dong2*, DU Zeng-feng2*. Research on the Classification Method of Benthic Fauna Based on
Hyperspectral Data and Random Forest Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3015-3022. |
[3] |
JIA Zong-chao1, WANG Zi-jian1, LI Xue-ying1, 2*, QIU Hui-min1, HOU Guang-li1, FAN Ping-ping1*. Marine Sediment Particle Size Classification Based on the Fusion of
Principal Component Analysis and Continuous Projection Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3075-3080. |
[4] |
GUO Ge1, 3, 4, ZHANG Meng-ling3, 4, GONG Zhi-jie3, 4, ZHANG Shi-zhuang3, 4, WANG Xiao-yu2, 5, 6*, ZHOU Zhong-hua1*, YANG Yu2, 5, 6, XIE Guang-hui3, 4. Construction of Biomass Ash Content Model Based on Near-Infrared
Spectroscopy and Complex Sample Set Partitioning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3143-3149. |
[5] |
LI Yang1, LI Xiao-qi1, YANG Jia-ying1, SUN Li-juan2, CHEN Yuan-yuan1, YU Le1, WU Jing-zhu1*. Visualisation of Starch Distribution in Corn Seeds Based on Terahertz Time-Domain Spectral Reflection Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2722-2728. |
[6] |
MA Qian1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, CHENG Hui-zhu1, 2, ZHAO Yan-chun1, 2. Research on Classification of Heavy Metal Pb in Honeysuckle Based on XRF and Transfer Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2729-2733. |
[7] |
YANG Sen1, ZHANG Xin-ao1, XING Jian1, DAI Jing-min2. Study on Multi-Feature Model Fusion Variety Classification and Multi-Parameter Appearance Inspection for Milled Rice[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2837-2842. |
[8] |
JIN Chun-bai1, YANG Guang1*, LU Shan2*, LIU Wen-jing1, LI De-jun1, ZHENG Nan1. Band Selection Method Based on Target Saliency Analysis in Spatial Domain[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2952-2959. |
[9] |
PU Shan-shan, ZHENG En-rang*, CHEN Bei. Research on A Classification Algorithm of Near-Infrared Spectroscopy Based on 1D-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2446-2451. |
[10] |
FAN Ya-wen, LIU Yan-ping*, QIU Bo, JIANG Xia, WANG Lin-qian, WANG Kun. Research on Spectral Classification of Stellar Subtypes Based on
SSTransformer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2523-2528. |
[11] |
TANG Ting, PAN Xin*, LUO Xiao-ling, GAO Xiao-jing. Fusion of ConvLSTM and Multi-Attention Mechanism Network for
Hyperspectral Image Classification[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2608-2616. |
[12] |
JIANG Xia*, QIU Bo, WANG Lin-qian, GUO Xiao-yu. Automatic Classification Method of Star Spectra Based on
Semi-Supervised Mode[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1875-1880. |
[13] |
WU Chao1, QIU Bo1*, PAN Zhi-ren1, LI Xiao-tong1, WANG Lin-qian1, CAO Guan-long1, KONG Xiao2. Application of Spectral and Metering Data Fusion Algorithm in Variable Star Classification[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1869-1874. |
[14] |
ZHENG Zhi-jie1, LIN Zhen-heng1, 2*, XIE Hai-he2, NIE Yong-zhong3. The Method of Terahertz Spectral Classification and Identification for Engineering Plastics Based on Convolutional Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1387-1393. |
[15] |
LIU Shuang1, YU Hai-ye2, SUI Yuan-yuan2, KONG Li-juan3, YU Zhan-dong1, GUO Jing-jing2, QIAO Jian-lei1*. Hyperspectral Data Analysis for Classification of Soybean Leaf Diseases[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1550-1555. |
|
|
|
|