|
|
|
|
|
|
Hyperspectral Data Analysis for Classification of Soybean Leaf Diseases |
LIU Shuang1, YU Hai-ye2, SUI Yuan-yuan2, KONG Li-juan3, YU Zhan-dong1, GUO Jing-jing2, QIAO Jian-lei1* |
1. College of Horticulture, Jilin Agricultural University, Changchun 130118, China
2. School of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
3. College of Engineering and Technology, Jilin Agricultural University, Changchun 130118, China
|
|
|
Abstract Rapid and non-destructive detection of crop disease types are essential to improve crop quality and yield. Traditional disease classification methods are time-consuming and difficult to detect in real-time. Therefore, the classification of soybean diseases was carried out by the hyperspectral technique. In this paper, healthy soybean was used as the control, frogeye leaf spot and bacterial blight diseases were the research objects, and hyperspectral data of three types of leaves were obtained. Changes inthe reflectance of diseased and healthy leaves were analyzed based on hyperspectral curves. Two single methods, principal component analysis (PCA) and spectral index (SI), were used to extract effective disease information. A total of 30 SI were used. A combination method of PCA and SI (PCA-SI) was proposed on this basis. Extracting the effective principal component (PC) and the effective SI, which were divided into two groups (9SIs and 18SIs) according to the score, and then grouped corresponding to each effective PC respectively to form the variable set of effective information of the disease spectrum. Three methods were used to extract effective disease information respectively. Based on the extracted spectral variables, the least square support vector machine (LSSVM) and support vector machine (SVM) was used to establish the disease classification model. With the original hyperspectral as the benchmark and the accuracy of disease classification as the index, the disease classification performance of the model, the effective information extraction methods of different diseases and the effectiveness of the classifier were evaluated. The results showed that the hyperspectral reflectance of diseased leaves was higher than that of healthy leaves in the visible band of 450~700 nm, while the characteristics of diseased leaves were opposite in the near-infrared band of 760~1 000 nm. A single PCA method was used to extract 34 effective PCS for disease classification. Based on the PCA-SI combination method, 5 effective PCs (PC1—PC5) and 18 effective SIs were extracted and grouped to obtain 10 groups of variables, and 13 groups of variables were used as modeling sets. The spectral variables extracted by the three methods have better disease classification ability than the original hyperspectral, and the proposed PCA-SI combination method has the optimal disease-effective information extraction ability. PC1-18SIs and PC4-18SIs were the best modeling sets, and the LSSVM classifier performed the best classification. PC1-18SIs-LSSVM and PC4-18SIs-LSSVM models were the optimal disease classification models. The total disease classification accuracy of the training and prediction sets was 100% and 98.85%, respectively. Compared with the original hyperspectral classification model, the overall classification ability of these two models was improved by 6.47% and 21.74%, respectively, and the model classification ability was good. It can provide a reference for real-time and non-destructive classification and identification of diseases.
|
Received: 2022-04-01
Accepted: 2022-07-04
|
|
Corresponding Authors:
QIAO Jian-lei
E-mail: qiaojianlei918@163.com
|
|
[1] Chapwanya M, Matusse A, Dumont Y. Applied Mathematical Modelling,2021, 90: 912.
[2] Wu F, Geng Y, Zhang Y Q, et al. Journal of Cleaner Production,2020, 244: 119006.
[3] Butler S, Kelly H, Mueller T, et al. Crop Protection,2018, 112: 149.
[4] Bock C H, Barbedo J G A, Del Ponte E M, et al. Phytopathology Research,2020, 2(1): 1.
[5] Xie C Q, Shao Y N, Li X L. Scientific Reports,2015, 5: 16564.
[6] Wang C Y, Linderholm H W, Song Y L, et al. International Journal of Environmental Research and Public Health,2020, 17(7): 2459.
[7] Zhang S L, Huang J L, Hanan J, et al. Multimedia Tools and Applications-An International Journal,2020, 79(23-24): 16645.
[8] Junges A H, Almance M A K, Fajardo T V M, et al. Tropical Plant Pathology. 2020, 45(5): 522.
[9] ZHANG Liang-pei, ZHANG Li-fu(张良培,张立福). Hyperspectral Remote Sensing(高光谱遥感). Wuhan: Wuhan University Press(武汉: 武汉大学出版社), 2011. 86.
[10] Lu Z J, Ehsani R, Shi Y Y, et al. Scientific Reports,2018, 8(1): 2793.
[11] Tang R N, Chen X P, Li C. Applied Spectroscopy,2018, 72(5): 740.
[12] Daughtry C S T, Walthall C L, Kim M S, et al. Remote Sensing of Environment. 2010, 74(2): 229.
[13] El-Hendawy S, Al-Suhaibani N, Hassan W, et al. PLOS ONE,2017, 12(8): e0183262.
[14] XIE Chuan-qi,WANG Jia-yue,FENG Lei,et al(谢传奇,王佳悦,冯 雷,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2013, 33(6): 1603.
|
[1] |
WANG Cai-ling1,ZHANG Jing1,WANG Hong-wei2*, SONG Xiao-nan1, JI Tong3. A Hyperspectral Image Classification Model Based on Band Clustering and Multi-Scale Structure Feature Fusion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 258-265. |
[2] |
GAO Hong-sheng1, GUO Zhi-qiang1*, ZENG Yun-liu2, DING Gang2, WANG Xiao-yao2, LI Li3. Early Classification and Detection of Kiwifruit Soft Rot Based on
Hyperspectral Image Band Fusion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 241-249. |
[3] |
WU Hu-lin1, DENG Xian-ming1*, ZHANG Tian-cai1, LI Zhong-sheng1, CEN Yi2, WANG Jia-hui1, XIONG Jie1, CHEN Zhi-hua1, LIN Mu-chun1. A Revised Target Detection Algorithm Based on Feature Separation Model of Target and Background for Hyperspectral Imagery[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 283-291. |
[4] |
CHU Bing-quan1, 2, LI Cheng-feng1, DING Li3, GUO Zheng-yan1, WANG Shi-yu1, SUN Wei-jie1, JIN Wei-yi1, HE Yong2*. Nondestructive and Rapid Determination of Carbohydrate and Protein in T. obliquus Based on Hyperspectral Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3732-3741. |
[5] |
LI Wei1, TAN Feng2*, ZHANG Wei1, GAO Lu-si3, LI Jin-shan4. Application of Improved Random Frog Algorithm in Fast Identification of Soybean Varieties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3763-3769. |
[6] |
HUANG You-ju1, TIAN Yi-chao2, 3*, ZHANG Qiang2, TAO Jin2, ZHANG Ya-li2, YANG Yong-wei2, LIN Jun-liang2. Estimation of Aboveground Biomass of Mangroves in Maowei Sea of Beibu Gulf Based on ZY-1-02D Satellite Hyperspectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3906-3915. |
[7] |
ZHOU Bei-bei1, LI Heng-kai1*, LONG Bei-ping2. Variation Analysis of Spectral Characteristics of Reclaimed Vegetation in an Ionic Rare Earth Mining Area[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3946-3954. |
[8] |
YUAN Wei-dong1, 2, JU Hao2, JIANG Hong-zhe1, 2, LI Xing-peng2, ZHOU Hong-ping1, 2*, SUN Meng-meng1, 2. Classification of Different Maturity Stages of Camellia Oleifera Fruit
Using Hyperspectral Imaging Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3419-3426. |
[9] |
FU Gen-shen1, LÜ Hai-yan1, YAN Li-peng1, HUANG Qing-feng1, CHENG Hai-feng2, WANG Xin-wen3, QIAN Wen-qi1, GAO Xiang4, TANG Xue-hai1*. A C/N Ratio Estimation Model of Camellia Oleifera Leaves Based on
Canopy Hyperspectral Characteristics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3404-3411. |
[10] |
SHEN Ying, WU Pan, HUANG Feng*, GUO Cui-xia. Identification of Species and Concentration Measurement of Microalgae Based on Hyperspectral Imaging[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3629-3636. |
[11] |
XIE Peng, WANG Zheng-hai*, XIAO Bei, CAO Hai-ling, HUANG Yi, SU Wen-lin. Hyperspectral Quantitative Inversion of Soil Selenium Content Based on sCARS-PSO-SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3599-3606. |
[12] |
QIAN Rui1, XU Wei-heng2, 3 , 4*, HUANG Shao-dong2, WANG Lei-guang2, 3, 4, LU Ning2, OU Guang-long1. Tea Plantations Extraction Based on GF-5 Hyperspectral Remote Sensing
Imagery in the Mountainous Area[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3591-3598. |
[13] |
ZHU Zhi-cheng1, WU Yong-feng2*, MA Jun-cheng2, JI Lin2, LIU Bin-hui3*, JIN Hai-liang1*. Response of Winter Wheat Canopy Spectra to Chlorophyll Changes Under Water Stress Based on Unmanned Aerial Vehicle Remote Sensing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3524-3534. |
[14] |
YANG Lei1, 2, 3, ZHOU Jin-song1, 2, 3, JING Juan-juan1, 2, 3, NIE Bo-yang1, 3*. Non-Uniformity Correction Method for Splicing Hyperspectral Imager Based on Overlapping Field of View[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3582-3590. |
[15] |
SUN Lin1, BI Wei-hong1, LIU Tong1, WU Jia-qing1, ZHANG Bao-jun1, FU Guang-wei1, JIN Wa1, WANG Bing2, FU Xing-hu1*. Identification Algorithm of Green Algae Using Airborne Hyperspectral and Machine Learning Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3637-3643. |
|
|
|
|