|
|
|
|
|
|
Research on Detecting CO2 With Off-Beam Quartz-Enhanced Photoacoustic Spectroscopy at 2.004 μm |
XIE Ying-chao1,2, WANG Rui-feng1,2, CAO Yuan1,2, LIU Kun1*, GAO Xiao-ming1,2 |
1. Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
2. Science Island Branch, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract CO2 is an important component of the atmosphere and a product of excessive combustion of coal, oil, and natural gas in modern industrial societies. On the one hand, elevated concentrations of CO2 in the atmosphere can cause a greenhouse effect, which is mainly due to human activities. On the other hand, CO2 is a suffocating gas, and excessive accumulation of CO2 in a closed environment can lead to safety problems such as suffocation. Therefore, the development of miniaturized and highly sensitive CO2 detection technology has important significance and application requirements in the detection of atmospheric environment and safety monitoring of closed environmental work areas. In this paper, based on the rapid development of miniaturized quartz-enhanced photoacoustic spectroscopy technology, the research on CO2 detection has been carried out with a relatively simple off-beam structure scheme. Off-beam quartz-enhanced photoacoustic spectroscopy has the advantages of small size, high sensitivity, anti-interference, low cost, low power consumption and low laser requirements, and has great potential for developing low-power portable gas sensors. In recent years, especially with the gradual maturity of near-infrared laser technology, it provides better quality and higher energy excitation light source for this technology, Off-beam quartz-enhanced photoacoustic spectroscopy has a higher detection sensitivity and enables accurate detection of low concentration gases. The HITRAN database 2012 is used to screen out the suitable absorption line (at 4 989.97 cm-1), and the 2.004 μm near-infrared distributed feedback semiconductor laser is selected as the excitation source. The CO2 photoacoustic signal is excited by the wavelength modulation method, and the second harmonic detection technology is used to detect the photoacoustic signal. In the experiment, the detection performance is improved by humidifying the injected carbon dioxide gas and optimizing the modulation amplitude, and the detection of air CO2 is realized. Under normal pressure, different concentrations of CO2 samples are arranged by gas distribution machine, and the response characteristics of concentration and signal are studied by preparing different concentrations of CO2 samples thought gas distribution machine, and a good linear response result is obtained. At the same time, the signal offixed concentration of CO2 sample under different pressures is measured, and Allan variance was used to evaluate the system performance. The results show that when the average time is 1 000 s, the detection limit of the system is 4×10-3 μL·L-1. The best 2f signal is obtained at a pressure of 150 Torr. The minimum detection sensitivity of the system for CO2 is 15 μL·L-1 at atmospheric pressure, and it is reduced to 6 μL·L-1 at 150 Torr.
|
Received: 2019-07-26
Accepted: 2019-11-30
|
|
Corresponding Authors:
LIU Kun
E-mail: liukun@aiofm.ac.cn
|
|
[1] CHENG Gang, CAO Yuan, LIU Kun, et al(程 刚,曹 渊,刘 锟,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2019, 39(1): 31.
[2] Wilcken K, Kauppinen J. Appl. Spectrosc., 2003, 57: 1087.
[3] Liu Kun, Cao Yuan, Wang Guishi, et al. Sensors and Actuators: Chemical, 2018, 277: 571.
[4] Kosterev A A, Tittle F K, Curl R F, et al. Optics Letters, 2002, 27(21): 1902.
[5] Liu Kun, Guo Xiaoyong, Yi Hongming, et al. Optics Letters, 2009, 34(10): 1594.
[6] WANG Gui-shi, YI Hong-ming, CAI Ting-dong, et al(王贵师,易红明,蔡廷栋,等). Acta Physics Sinica(物理学报), 2012, 61(12), 120701.
[7] Yi H, Liu K, Chen W, et al. Optics Letters, 2011, 36(4): 481.
[8] Kosterev A A, Tittel F K. Applied Optics, 2004, 43(33): 6213.
[9] Zheng H, Dong L, Sampaolo A, et al. Optics Letters, 2016, 41(5): 978.
[10] DONG Lei, MA Wei-guang, ZHANG Lei, et al(董 磊,马维光,张 雷,等). Acta Optica Sinica(光学学报), 2014, 34(1): 0130002.
[11] ZHAO Yan-dong, FANG Yong-hua, LI Yang-yu, et al(赵彦东,方勇华,李扬裕,等). Acta Physica Sinica(物理学报), 2016, 65(19): 30.
[12] Ma Yufei, He Ying, Zhang Ligong, et al. Applied Physics Letters, 2017, 110:031107.
[13] Ma Y, Lewicki R, Razeghi M, et al. Optics Express, 2013, 21(1): 1008. |
[1] |
FU Wen-xiang, DONG Li-qiang, YANG Liu*. Research Progress on Detection of Chemical Warfare Agent Simulants and Toxic Gases by Photoacoustic Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3653-3658. |
[2] |
ZHENG Ni-na1, 2*, XIE Pin-hua1, QIN Min1, DUAN Jun1. Research on the Influence of Lamp Structure of the Combined LED Broadband Light Source on Differential Optical Absorption Spectrum
Retrieval and Its Removing Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3339-3346. |
[3] |
ZHU Hua-dong1, 2, 3, ZHANG Si-qi1, 2, 3, TANG Chun-jie1, 2, 3. Research and Application of On-Line Analysis of CO2 and H2S in Natural Gas Feed Gas by Laser Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3551-3558. |
[4] |
LAI Chun-hong*, ZHANG Zhi-jun, WEN Jing, ZENG Cheng, ZHANG Qi. Research Progress in Long-Range Detection of Surface-Enhanced Raman Scattering Signals[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2325-2332. |
[5] |
LIU Hong-yuan1, WU Bin1, 2, JIANG Tao3, YANG Yan-zhao1, WANG Hong-chao1, LI Jing-song1. Study on the Measurement of Absolute Spectral Responsivity of Terahertz Detector[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1017-1022. |
[6] |
LI Shuai-wei1, WEI Qi1, QIU Xuan-bing1*, LI Chuan-liang1, LI Jie2, CHEN Ting-ting2. Research on Low-Cost Multi-Spectral Quantum Dots SARS-Cov-2 IgM and IgG Antibody Quantitative Device[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1012-1016. |
[7] |
OUYANG Ke-chen1, 2, XING Li2, WANG Zheng2, 3, FENG Xiao-juan2*, ZHANG Jin-tao2, REN Cheng1, YANG Xing-tuan1. Analysis and Suppression of Laser-Induced Error in Temperature
Measurement Based on Nitrogen-Vacancy Centers in Diamond[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1242-1247. |
[8] |
ZHANG Chao1*, SU Xiao-yu1, XIA Tian2, YANG Ke-ming3, FENG Fei-sheng4. Monitoring the Degree of Pollution in Different Varieties of Maize Under Copper and Lead Stress[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1268-1274. |
[9] |
SI Gan-shang1, 2, LIU Jia-xiang1, LI Zhen-gang1, 2, NING Zhi-qiang1, 2, FANG Yong-hua1, 2*, CHENG Zhen1, 2, SI Bei-bei1, 2, YANG Chang-ping1, 2. Raman Signal Enhancement for Liquid Detection Using a New Sample Cell[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 712-717. |
[10] |
ZHANG Tian-yao1, 2, LI Bo-yang1, LI Xing-yue1, LI Ying1, WU Xian-hao1, ZHAO Xiao-yan1, ZHANG Zhao-hui1*. Refractive Index Measurement Using Continuous Wave Terahertz
Frequency-Domain Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 495-502. |
[11] |
ZHA Ling-ling1, 2, 3, WANG Wei2*, XIE Yu1, SHAN Chang-gong2, ZENG Xiang-yu2, SUN You-wen2, YIN Hao2, HU Qi-hou2. Observation of Variations of Ambient CO2 Using Portable FTIR
Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1036-1043. |
[12] |
ZHAO Yue2, MA Feng-xiang2, WANG An-jing1*, LI Da-cheng1, SONG Yu-mei2, WU Jun1, CUI Fang-xiao1, LI Yang-yu1, CAO Zhi-cheng1. Research on Electric Breakdown Fault Diagnosis Model of Transformer Insulated Oil Based on Fluorescent Double-Color Ratio[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1134-1138. |
[13] |
WANG Ai-chen1, 4, GAO Bin-jie1, ZHAO Chun-jiang1, 2, XU Yi-fei3, 4, WANG Miao-lin1, YAN Shu-gang1, LI Lin1, WEI Xin-hua1*. Detecting Green Plants Based on Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 788-794. |
[14] |
FU Juan, MO Jia-mei, YU Yi-song, ZHANG Qing-zong, CHEN Xiao-li, CHEN Pei-li, ZHANG Shao-hong, SU Qiu-cheng*. Experimental Study on the Structure Characteristics of CO2 in Gas Hydrate by Solid-State Nuclear Magnetic Resonance and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 464-469. |
[15] |
MENG Fan, LIU Yang*, WANG Huan, YAN Qi-cai. Research and Implementation of High-Performance Wavemeter Based on Principle Component Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3625-3631. |
|
|
|
|