|
|
|
|
|
|
Hyperspectral Image Classification Based on Hierarchical Fusion of Residual Networks |
ZHANG Yi-zhuo, XU Miao-miao, WANG Xiao-hu, WANG Ke-qi* |
College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China |
|
|
Abstract Hyperspectral images contain a wealth of feature information, and they have been widely used in urban feature classification in recent years. In the process of hyperspectral image classification, the extraction of spatial spectral features directly affects the classification accuracy. Traditional hyperspectral image feature extraction methods only use 4 or 8 neighborhood pixels for simple convolution processing, thus losing a lot of complex and effective information. Convolution neural network (CNN) can automatically extract spatial spectral features and retain the same spatial information of the image, and the network model is simplified. However, with the increase of network depth, the network classification will degenerate, and the network lacks complementarity of relevant information, which will affect the classification accuracy. In this paper, a hyperspectral residual network for feature classification is designed for the degradation problem. Firstly, define the residual network module of the low, medium and high three-layer structure with convolution kernels of 16, 32, and 64. Then, convolve the 3-layer output features with 64 1×1 convolution kernels to complete the dimension matching and feature map. Next, the global average pooling (GAP) of the feature map is generated to generate the feature vector for classification. Finally, the Large-Margin Softmax objective function is introduced to achieve hyperspectral image classification. The experiments were performed using hyperspectral images from the Indian Pines, University of Pavia, and Salinas regions. The primary bands of the hyperspectral image were extracted by PCA. With the sample set of batch training being 100, the initial learning rate being 0.1, the momentum being 0.9, the weight delay being 0.000 1, and the maximum number of training iterations being 2×104, when the sample sizes of the three data sets are set to be 25×25,23×23 and 27×27, the network depth is 28,32 and 28, the classification accuracy of the three data sets is the highest, and the average overall accuracy OA is 98.75%, the average accuracy AA is 98.1% and the average Kappa coefficient is 0.98. The experimental results show that the classification method based on residual network can get more affective features. It can improve the classification accuracy with the increase of the number of residual network layers and the fusion of complementary information of different network layer outputs; Large-Margin Softmax achieves intra-class compactness. Separation between classes further improves classification accuracy.
|
Received: 2019-01-13
Accepted: 2019-04-20
|
|
Corresponding Authors:
WANG Ke-qi
E-mail: zdhwkq@163.com
|
|
[1] Fauvel M, Tarabalka Y, Benediktsson J A, et al. Proceedings of the IEEE, 2013, 101(3): 652.
[2] Chen Y, Nasrabadi N M, Tran T D. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3973.
[3] Zhang H, Li J, Huang Y, et al. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2056.
[4] Krizhevsky A, Sutskever I, Hinton G. ImageNet Classification with Deep Convolutional Neural Networks. NIPS 2012: Neuram Information Processing Systems, 2012.
[5] Chen Yushi, Jiang Hanlu, Li Chunyang, et al. IEEE Trans Geoscience and Remote Sensing, 2016, 54(10): 6232.
[6] Hu W, Huang Y, Wei L, et al. Journal of Sensors, 2015(2): 1.
[7] Zhao W Z and Du S H. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54 (8): 4544.
[8] Zhong Z, Li J, Luo Z, et al. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 847.
[9] Liu W, Wen Y, Yu Z, et al. Large-Margin Softmax Loss for Convolutional Neural Networks. Proceedings of 33rd International Conference on Machine Learning, 2016: 507.
[10] Chai S, Liu H, Gu Y, et al. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4775.
[11] Zhang X, Zhang H, Zhang Y, et al. IEEE Transactions on Image Processing, 2016, 25(3): 1033.
[12] Song Weiwei,Li Shutao,Fang Leyuan,et al. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6): 3173. |
[1] |
WANG Yu-chen1, 2, KONG Ling-qin1, 2, 3*, ZHAO Yue-jin1, 2, 3, DONG Li-quan1, 2, 3*, LIU Ming1, 2, 3, HUI Mei1, 2. Hyperspectral Reconstruction From RGB Images for Tissue Oxygen
Saturation Assessment[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3193-3201. |
[2] |
YE Wen-chao1, LUO Shui-yang1, LI Jin-hao1, LI Zhao-rong1, FAN Zhi-wen1, XU Hai-tao1, ZHAO Jing1, LAN Yu-bin1, 2, DENG Hai-dong1*, LONG Yong-bing1, 2, 3*. Research on Classification Method of Hybrid Rice Seeds Based on the Fusion of Near-Infrared Spectra and Images[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2935-2941. |
[3] |
TANG Ting, PAN Xin*, LUO Xiao-ling, GAO Xiao-jing. Fusion of ConvLSTM and Multi-Attention Mechanism Network for
Hyperspectral Image Classification[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2608-2616. |
[4] |
MAO Yi-lin1, LI He1, WANG Yu1, FAN Kai1, SUN Li-tao2, WANG Hui3, SONG Da-peng3, SHEN Jia-zhi2*, DING Zhao-tang1, 2*. Quantitative Judgment of Freezing Injury of Tea Leaves Based on Hyperspectral Imaging[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2266-2271. |
[5] |
LIU Si-qi1, FENG Guo-hong1*, TANG Jie2, REN Jia-qi1. Research on Identification of Wood Species by Mid-Infrared Spectroscopy Based on CA-SDP-DenseNet[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 814-822. |
[6] |
LENG Si-yu1, 2, QIAO Jia-hui1, WANG Lian-qing3, WANG Jun1, 2*, ZOU Liang1. Rapid Qualitative Analysis of Wool Content Based on Improved
U-Net++ and Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 303-309. |
[7] |
FU Peng-you1, 2, WEN Yue2, ZHANG Yu-ke3, LI Ling-qiao1*, YANG Hui-hua1, 2*. Deep Learning Modelling and Model Transfer for Near-Infrared Spectroscopy Quantitative Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 310-319. |
[8] |
CUI De-jian1, LIU Yang-yang1, XIA Yuan-tian1, JIA Wei-e1, LIAN Zheng-xing2, LI Lin1*. Non-Destructive Detection of Egg Fertilization Status Based on Hyperspectral Diffuse Reflectance[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3685-3691. |
[9] |
NI Shuang, WEN Jia-xing, ZHOU Min-jie, HUANG Jing-lin, LE Wei, CHEN Guo, HE Zhi-bing, LI Bo, ZHAO Song-nan, ZHAO Zong-qing, DU Kai*. Theoretical Study on Raman Characteristic Peaks of Coronavirus Spike Protein Based on Deep Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2757-2762. |
[10] |
ZHANG Shuai-shuai1, GUO Jun-hua1, LIU Hua-dong1, ZHANG Ying-li1, XIAO Xiang-guo2, LIANG Hai-feng1*. Design of Subwavelength Narrow Band Notch Filter Based on
Depth Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1393-1399. |
[11] |
SUN Wen-bin2, WANG Rong1, 3, 4, GAO Rong-hua1, 3*, LI Qi-feng1, 3, WU Hua-rui1, 3, FENG Lu1, 3. Crop Disease Recognition Based on Visible Spectrum and Improved
Attention Module[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1572-1580. |
[12] |
TAN Ai-ling1, CHU Zhen-yuan1, WANG Xiao-si1, ZHAO Yong2*. Detection of Pearl Powder Adulteration Based on Raman Spectroscopy and DCGAN Data Enhancement[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 769-775. |
[13] |
SUN Zhi-xing, ZHAO Zhong-gai*, LIU Fei. Near-Infrared Spectral Modeling Based on Stacked Supervised Auto-Encoder[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 749-756. |
[14] |
TIAN Qing-lin1, GUO Bang-jie1, YE Fa-wang1, LI Yao2, LIU Peng-fei1, CHEN Xue-jiao1. Mineral Spectra Classification Based on One-Dimensional Dilated Convolutional Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 873-877. |
[15] |
LIU Zhong-bao1, WANG Jie2*. Research on the Improvement of Spectra Classification Performance With the High-Performance Hybrid Deep Learning Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 699-703. |
|
|
|
|