|
|
|
|
|
|
Adsorption Properties of Thiol-Modified, Sodium-Modified and Acidified Bentonite for Cu2+, Pb2+ and Zn2+ |
PANG Ting-wen1, YANG Zhi-jun1, 2*, HUANG Yi-cong1, LEI Xue-ying1, ZENG Xuan1, LI Xiao-xiao1 |
1. School of Earth Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
2. Guangdong Provincial Key Laboratory of Mineral Resource Exploration & Geological Processes, Guangzhou 510275, China |
|
|
Abstract In order to investigate the adsorbability of modified bentonite, Fourier Transform Infrared Spectrometer (FTIR Spectrometer) and Scanning Electron Microscope(SEM) were carried outto characterize the properties of samples. The amount of Cu2+, Pb2+ and Zn2+absorbed by three kinds of modified bentonite, thiol-modified bentonite, sodium-modified bentonite and acidified bentonite, in the environment of isothermal adsorption and competitive adsorption, were investigated and analyzed respectively. The results show that in the environment of isothermal adsorption, the adsorption capacity of thiol-modified bentonite is much superior to others, especially appearing adsorptive selectivity for Pb2+, the adsorption rate amounts to nearly 100%. In the environment of competitive adsorption, the adsorption rate for three kinds of modified bentonite on Cu2+, Pb2+and Zn2+ all decrease to some extent, but thiol-modified bentonite performs better in generally, which shows 10%~40% higher than the others, besides, the competitive adsorption ability of three metal ions can be given as Cu2+>Pb2+>Zn2+, which relate to their competitive ability, chemical affinity and so on. The modified process of thiol-modified bentonite is simple and the effect on adsorbing heavy metals is desirable. Therefore, it is an important study of modified bentonite and its application.
|
Received: 2016-11-30
Accepted: 2017-04-20
|
|
Corresponding Authors:
YANG Zhi-jun
E-mail: yangzhj@mail.sysu.edu.cn
|
|
[1] HUANG Yi-zong, HAO Xiao-wei, LEI Ming, et al(黄益宗,郝晓伟,雷 鸣,等). Journal of Agro-Environment Science(农业环境科学学报),2013, 32(3): 409.
[2] ZHOU Jian-jun, ZHOU Ju, FENG Ren-guo, et al(周建军,周 桔,冯仁国,等). Bulletin of Chinese Academy of Sciences(中国科学院院刊), 2014, 29(3): 315.
[3] Bereket G, Arouz A Z, zel M Z. Colloid Interface Science, 1997, 187: 338.
[4] Rauf N, Ikram M, Tahir S S. Adsorption Science &Technology,1999, 17(5): 431.
[5] HAN Hong-qing, ZHU Yue(韩红青, 朱 岳). Inorganic Chamicals Industry(无机盐工业), 2011, 43(10): 5.
[6] MENG Yuan-yuan, WANG Qi, JIN Zhi-jie(孟园园, 王 琦, 金志杰). Pollution Control Technology(污染防治技术),2008,21(3): 53.
[7] SUN Hong-liang(孙洪良). Chemical Research and Application(化学研究与应用), 2007, 19(7): 745.
[8] Guerra D J L, Mello I, Freitas L R, et al. International Journal of Mining Science and Technology, 2014, 24: 525.
[9] ZHANG Jian-le, CHEN Wan-wei(张建乐, 陈万维). China Nonmetallic Minerals Industry(建材地质), 1996, (1): 34.
[10] LI Yuan-yuan, LIU Wen-hua, CHEN Fu-qiang, et al(李媛媛, 刘文华, 陈福强,等). Chinese Journal of Environmental Engineering(环境工程学报), 2013, 7(8): 3013.
[11] Zeng Xiuqiong. Journal of Zhejiang University SCIENCE B, 2006, 7(4): 314.
[12] Li Liangxiong, Dong Junhang, Lee Robert. Journal of Colloid and Interface Science, 2004, 273: 540.
[13] Lei Dongsheng, Yuan Jizu, Yu Yongfu. Journal of Wuhan University of Technology, 2006, 21(1): 92.
[14] ZHANG Yong-min, REN Jian-min, LIU Gao-yuan, et al(张永民, 任建敏, 刘高源,等). Journal of Chongqing Technology and Business University·Natural Science Edition(重庆工商大学学报),2009,26(3): 286.
[15] CHEN Wen, XIONG Qiong-xian, ZHU Xia-ping, et al(陈 文, 熊琼仙, 朱霞萍,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2013, 33(3): 817.
[16] Jing Ping,Zhao Ping,Hou Meifang,et al. Journal of Environmental Sciences, 2013, 25(6): 1139.
[17] CAO Xiao-qiang, ZHANG Yan, QIU Jun, et al(曹晓强, 张 燕, 邱 俊,等). Journal of the Chinese Ceramic Society(硅酸盐学报), 2014, 42(11): 1448.
[18] Zhang Yaxin, Zhao Yan, Zhu Yong, et al. Journal of Environmental Sciences, 2012, 24(8): 1525.
[19] WU Ping-xiao, LIAO Zong-wen(吴平霄, 廖宗文). Nature Magazine(科技进展), 2000, 22(1): 25.
[20] LIN Cui-ying, YANG Yang, LI Ling, et al(林翠英, 杨 旸, 李 凌,等). Acta Science Circumstantiae(环境科学学),2003, 23(6): 738.
[21] Lagadic I L,Mitchell M K,Payne B D. Environmental Science and Technology, 2001, 35(5): 984.
[22] PAN Jia-fen, LU Jie(潘嘉芬, 卢 杰). Metal Mine(金属矿山), 2008, 387(9): 130.
[23] LIN Qing, XU Shao-hui(林 青, 徐绍辉). Soils(土壤), 2008, (5): 706.
[24] Naseem R, Tahir S S. Water Res., 2001, 35(16): 3982.
[25] Mercier L,Detellier C. Environmental Science and Technology, 1995, 29(5): 1318.
[26] XU Xiao-jun(徐晓军). Action Principle of Chemical Flocculant(化学絮凝剂作用原理). Beijing: Science Press(北京: 科学出版社), 2005. 10.
[27] YU Guang-li, LI Ba-fang, LIANG Ping-fang(于广利, 李八方, 梁平方). Chinese Journal of Marine Drugs(中国海洋药物), 1996, (4): 13.
[28] YANG Hong-cai, ZHENG Shui-lin(杨红彩, 郑水林). China Non-Metallic Mining Industry Herald(中国非金属矿工业导刊), 2004, Z1: 55.
[29] ZHANG Tai-liang, HUANG Zhi-yu, MO Jun, et al(张太亮, 黄志宇, 莫 军,等). Drilling & Production Technology(钻采工艺), 2006, 29(6): 102.
[30] WANG Zhong-an, ZHU Yi-min(王忠安, 朱一民). Non-Ferrous Mining and Metallurgy(有色矿冶), 2006, 22(2): 45.
[31] HU Ke-wei, JIA Dong-yan, YAN Li, et al(胡克伟, 贾冬艳, 颜 丽,等). Chinese Journal of Soil Science(土壤通报), 2011, 42(2): 164.
[32] LIU Ji-fang, CAO Cui-hua, JIANG Yi-chao, et al(刘继芳, 曹翠华, 蒋以超,等). Soils and Fertilizers(土壤肥料), 2000, 2: 30.
[33] Kubilay S,Gurkan R,Savran A. Adsorption, 2007, 13(1): 41. |
[1] |
LIANG Ye-heng1, DENG Ru-ru1, 2*, LIANG Yu-jie1, LIU Yong-ming3, WU Yi4, YUAN Yu-heng5, AI Xian-jun6. Spectral Characteristics of Sediment Reflectance Under the Background of Heavy Metal Polluted Water and Analysis of Its Contribution to
Water-Leaving Reflectance[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 111-117. |
[2] |
CHENG Hui-zhu1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, MA Qian1, 2, ZHAO Yan-chun1, 2. Genetic Algorithm Optimized BP Neural Network for Quantitative
Analysis of Soil Heavy Metals in XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3742-3746. |
[3] |
LIU Hong-wei1, FU Liang2*, CHEN Lin3. Analysis of Heavy Metal Elements in Palm Oil Using MP-AES Based on Extraction Induced by Emulsion Breaking[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3111-3116. |
[4] |
MA Qian1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, CHENG Hui-zhu1, 2, ZHAO Yan-chun1, 2. Research on Classification of Heavy Metal Pb in Honeysuckle Based on XRF and Transfer Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2729-2733. |
[5] |
CHAI Lin-lin, Areyi Mulati, Shawket Abliz*. Analysis the Adsorption Behaviors of Acetic Acid Modified Sand Grains for Lead Ions by Atomic Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2775-2778. |
[6] |
CHENG Fang-beibei1, 2, GAN Ting-ting1, 3*, ZHAO Nan-jing1, 4*, YIN Gao-fang1, WANG Ying1, 3, FAN Meng-xi4. Rapid Detection of Heavy Metal Lead in Water Based on Enrichment by Chlorella Pyrenoidosa Combined With X-Ray Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2500-2506. |
[7] |
ZHANG Xia1, WANG Wei-hao1, 2*, SUN Wei-chao1, DING Song-tao1, 2, WANG Yi-bo1, 2. Soil Zn Content Inversion by Hyperspectral Remote Sensing Data and Considering Soil Types[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2019-2026. |
[8] |
TANG Quan1, ZHONG Min-jia2, YIN Peng-kun2, ZHANG Zhi3, CHEN Zhen-ming1, WU Gui-rong3*, LIN Qing-yu4*. Imaging of Elements in Plant Under Heavy Metal Stress Based on Laser-Induced Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1485-1488. |
[9] |
ZHANG Chao1*, SU Xiao-yu1, XIA Tian2, YANG Ke-ming3, FENG Fei-sheng4. Monitoring the Degree of Pollution in Different Varieties of Maize Under Copper and Lead Stress[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1268-1274. |
[10] |
CHEN Ping-yun1, KANG Xiu-tang1, GUO Liang-qia2*. Study of Emission Characteristics of Particulate Arsenic, Cadmium, Copper and Lead Derived From Burning of Tibetan Incenses by
ICP-OES Method With Microwave Digestion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 419-425. |
[11] |
ZHU Zhao-zhou1, YAN Wen-rui1, 2, ZHANG Zi-jing1, 2. Research of Pollution Characteristics, Ecological and Health Risks of Heavy Metals in PM2.5 From Fireworks by Inductively Coupled
Plasma-Mass Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 644-650. |
[12] |
TANG Ju1, 2, DAI Zi-yun2*, LI Xin-yu2, SUN Zheng-hai1*. Investigation and Research on the Characteristics of Heavy Metal Pollution in Children’s Sandpits Based on XRF Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3879-3882. |
[13] |
LIU Hong-jun1, NIU Teng1, YU Qiang1*, SU Kai2, YANG Lin-zhe1, LIU Wei1, WANG Hui-yuan1. Inversion and Estimation of Heavy Metal Element Content in Peach Forest Soil in Pinggu District of Beijing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3552-3558. |
[14] |
JUMAHONG Yilizhati1, 2, TAN Xi-juan1, 2*, LIANG Ting1, 2, ZHOU Yi1, 2. Determination of Heavy Metals and Rare Earth Elements in Bottom Ash of Waste Incineration by ICP-MS With High-Pressure Closed
Digestion Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3168-3173. |
[15] |
WU Bing, YANG Ke-ming*, GAO Wei, LI Yan-ru, HAN Qian-qian, ZHANG Jian-hong. EC-PB Rules for Spectral Discrimination of Copper and Lead Pollution Elements in Corn Leaves[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3256-3262. |
|
|
|
|