|
|
|
|
|
|
Preparation and Characterization of Silicon, Silver, Fluorine Co-Modified Hydroxyapatite Nano-Biofilms |
YE Ting1, QIAO Hai-xia1, HUANG Yong1,2*, GUO Jia-chi1, MA Meng-chu1, RU Ping1, CHEN Fang-fang1, YUAN Cui-fang1, LIU Huan1, SU Zhuo-bin3, ZHANG Xue-jiao1*, GAO Yuan4 |
1. College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
2. Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
3. First Affiliated Hospital, Hebei North University, Zhangjiakou 075000, China
4. Department of Electronic and Computer Engineering, Hong Kong University of Science, Hong Kong S.A.R, China |
|
|
Abstract In this study, a novel silicon, silver, fluorine co-modified hydroxyapatite (Si-Ag-F-HA) nano-biofilms was deposited on CP-Ti through electrodeposition. Ag was incorporated into HA coating to improve the antimicrobial properties. Si was added as a second binary element to offset the potential cytotoxicity of Ag. The as-prepared coatings were examined by scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) tests. Results highlight that F-, Si4+ and Ag+ could be evenly incorporated into the Si-Ag-F-HA coating. The results indicate that the Si-Ag-F-HA coatings take the morphology of nanoscale- villous-like,the composite coating becomes more compact. The composite coatings were found to be bioactive, based on the promotion of additional apatite onto the Si-Ag-F-HA coating surface from SBF. Potentiodynamic polarisation tests revealed that the corrosion resistance increased after Si-Ag-F-HA coating. The release of Si and Ag ions from Si-Ag-F-HA coatings shows sustained release kinetics without burst release, which reached a near steady state afterwards, thereby revealing long-term sustainable release. FTIR and ICP-MS provide a rapid and effective method for the development of new antibacterial hard tissue repair materials.
|
Received: 2016-12-16
Accepted: 2017-04-11
|
|
Corresponding Authors:
HUANG Yong, ZHANG Xue-jiao
E-mail: xfpang@aliyun.com; zbzxj0118@163.com
|
|
[1] Bakhsheshi-Rad H R, Hamzah E, Ismail A F, et al. Ceram. Int., 2016, 42:11941.
[2] ZHANG Xue-jiao, HAO Min, QIAO Hai-xia, et al(张雪姣, 郝 敏, 乔海霞,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2016, 36(3): 686.
[3] Lim P N, Shi Z L, Neoh K G, et al. Biomed. Mater., 2014, 9:1.
[4] Shirazi S F S, Gharehkhani S, Metselaar H S C, et al, RSC. Adv., 2016, 6:190.
[5] Huang Y, Qiao H X, Nian X F, et al. Surf. Coat. Tech., 2016, 291: 205.
[6] Huang Y, Zhang X J, Qiao H X, et al. Ceram. Int., 2016, 42: 1903.
[7] Huang Y, Zhang H L, Qiao H X, et al. Appl. Surf. Sci., 2015, 357: 1776.
[8] Huang Y, Zhang X J, Mao H H, et al. RSC. Adv., 2015, 5: 17076.
[9] Vranceanu D M, Cotrut C M, Bramowicz M, et al, Ceram. Int., 2016, 42: 10085.
[10] Ando Y, Miyamoto H, Noda I, et al, Mater. Sci. Eng. C, 2010, 30:175.
[11] Gopi D, Shinyjoy E, Kavitha L. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2014, 127.
[12] Dong G, Zheng Y X, He L Y, et al. Ceram. Int., 2016, 42: 883. |
[1] |
ZHANG Yu-hui1, 2, DING Yong-kang3, PEI Jing-cheng1, 2*, GU Yi-lu1, 2, YU Min-da1, 2. Chemical Constituents and Spectra Characterization of Monocrystal
Rhodonite From Brazil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3504-3508. |
[2] |
SUN Da-wei1, 2, 3, DENG Jun1, 2*, JI Bing-bing4. Study on the Preparation Mechanism of Steel Slag-Based Biomass Activated Carbon by Special Steel Slag-Discard Walnut Shells Based on ICP-MS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2308-2312. |
[3] |
XU Qi-lei, GUO Lu-yu, DU Kang, SHAN Bao-ming, ZHANG Fang-kun*. A Hybrid Shrinkage Strategy Based on Variable Stable Weighted for Solution Concentration Measurement in Crystallization Via ATR-FTIR Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1413-1418. |
[4] |
BI Yan-qi1, 2 , YANG Ying-dong3, DU Jing4, TANG Xiang5, LUO Wu-gan1, 2*. A Study on Mineral Material Sources of Multi-Style Bronzes Collected by Cultural Relic Administration Center of Huili County, Sichuan Province With MC-ICP-MS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1140-1146. |
[5] |
KAN Yu-na1, LÜ Si-qi1, SHEN Zhe1, ZHANG Yi-meng1, WU Qin-xian1, PAN Ming-zhu1, 2*, ZHAI Sheng-cheng1, 2*. Study on Polyols Liquefaction Process of Chinese Sweet Gum (Liquidambar formosana) Fruit by FTIR Spectra With Principal Component Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1212-1217. |
[6] |
YAN Li-dong1, ZHU Ya-ming1*, CHENG Jun-xia1, GAO Li-juan1, BAI Yong-hui2, ZHAO Xue-fei1*. Study on the Correlation Between Pyrolysis Characteristics and Molecular Structure of Lignite Thermal Extract[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 962-968. |
[7] |
LI Zong-xiang1, 2, ZHANG Ming-qian1*, YANG Zhi-bin1, DING Cong1, LIU Yu1, HUANG Ge1. Application of FTIR and XRD in Coal Structural Analysis of Fault
Tectonic[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 657-664. |
[8] |
CHENG Xiao-xiao1, 2, LIU Jian-guo1, XU Liang1*, XU Han-yang1, JIN Ling1, SHEN Xian-chun1, SUN Yong-feng1. Quantitative Analysis and Source of Trans-Boundary Gas Pollution in Industrial Park[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3762-3769. |
[9] |
ZHANG Hao1, 2, HAN Wei-sheng1, CHENG Zheng-ming3, FAN Wei-wei1, LONG Hong-ming2, LIU Zi-min4, ZHANG Gui-wen5. Thermal Oxidative Aging Mechanism of Modified Steel Slag/Rubber Composites Based on SEM and FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3906-3912. |
[10] |
WANG Zi-min1, MAO Xiao-tian1, YIN Zuo-wei1*, CHEN Chang2, CHENG Tian-jia1. Study on the Spectral Characteristics and the Color-Change Effect of Spinel[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3541-3545. |
[11] |
JUMAHONG Yilizhati1, 2, TAN Xi-juan1, 2*, LIANG Ting1, 2, ZHOU Yi1, 2. Determination of Heavy Metals and Rare Earth Elements in Bottom Ash of Waste Incineration by ICP-MS With High-Pressure Closed
Digestion Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3168-3173. |
[12] |
CHEN Jing-yi1, ZHU Nan2, ZAN Jia-nan3, XIAO Zi-kang1, ZHENG Jing1, LIU Chang1, SHEN Rui1, WANG Fang1, 3*, LIU Yun-fei3, JIANG Ling3. IR Characterizations of Ribavirin, Chloroquine Diphosphate and
Abidol Hydrochloride[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2047-2055. |
[13] |
LUO Heng, Andy Hsitien Shen*. Based on Color Calculation and In-Situ Element Analyze to Study the Color Origin of Purple Chalcedony[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1891-1898. |
[14] |
MA Fang1, HUANG An-min2, ZHANG Qiu-hui1*. Discrimination of Four Black Heartwoods Using FTIR Spectroscopy and
Clustering Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1915-1921. |
[15] |
YANG Yan-ling1, Andy Hsitien Shen1, FAN Yu-rong2, HUANG Wei-zhi1, PEI Jing-cheng1*. UV-Vis-NIR Spectroscopic Characteristics of Vanadium-Rich
Hydrothermal Synthetic Emeralds From Russia[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1199-1203. |
|
|
|
|