|
|
|
|
|
|
EC-PB Rules for Spectral Discrimination of Copper and Lead Pollution Elements in Corn Leaves |
WU Bing, YANG Ke-ming*, GAO Wei, LI Yan-ru, HAN Qian-qian, ZHANG Jian-hong |
College of Geoscience and Surveying Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
|
|
|
Abstract Heavy metal pollution of agricultural products has attracted much attention along with the improved human quality of life. The heavy metal elements in crops will harm human health through the food chain, and different heavy metal elements have a large difference in toxicity to the human body. Therefore, it is crucial to distinguish the types of heavy metal elements in crops. There are many shortcomings in the traditional methods of detecting heavy metals such as many links, long time, and high cost. However, hyperspectral remote sensing technology has the advantages of abundant information usage, strong physical and chemical inversion capabilities, fast analysis speed, non-destructive monitoring and so on. It has gradually become one of the important methods for analysing heavy metal pollution in crops.Taking the leaf spectra of a typical corn crop growing under soil stressed by different CuSO4·5H2O and Pb(NO3)2 concentration gradients as the research object, the copper (Cu) and lead (Pb) identification index (CLI) was builtbased on spectral processing results of continuum removal (CR), spectral ratio (SR)and fractional-order derivative (FOD) combining with modified red edge simple ratio index (MSR). Then the Cu and Pb element discrimination feature points (CLDFP) were established by selecting the three CLI values of fractional differential orders that have the strongest correlation with the types of Cu and Pb elements. And then, the Cu and Pb elements discriminant rule line (CLDRL) under the two-dimensional coordinate system (2D) and the discriminant rule plane (CLDRP) under the three-dimensional coordinate system (3D) were structured to identify the types of Cu and Pb elements. Based on the Euclidean cluster (EC)- the perpendicular bisector (PB) by using the EC to divide the training samples into two sets of Cu pollution and Pb pollution and combining with the PB to connect the circle enters the sets so that the types could be accurately identified on the heavy metal Cu and Pb elements in the spectral information of corn leaves. The results showed that the correlation between the spectral information of corn leaves and the types of Cu and Pb elements was enhanced because of the CR-SR-FOD spectral transformation processing. The correlation coefficients of the CLI corresponding to each order of FOD and the types of Cu and Pb elements were different. With the increase of orders, the correlation showed a trend of increasing first and then decreasing. Among them, the three values of orders of the highest correlation coefficients were 1.2, 0.7, and 1.0 respectively. The accuracy rate of the training set samples was 78.95% andthe accuracy rate of the verification set samples was 75.0% when discriminated under the 2D, and the accuracy rate of the training set samples was 76.32% and the accuracy rate of the verification set samples was 75.0% when discriminated under the 3D, it is proved that the spectral discriminant rulesof 2D CLDRL and 3D CLDRP based on EC-PB could effectively identify the types of Cu and Pb pollution elements when they polluted the corn leaves.
|
Received: 2021-08-22
Accepted: 2022-01-21
|
|
Corresponding Authors:
YANG Ke-ming
E-mail: ykm69@163.com
|
|
[1] Chakraborty S, Man T, Paulette L, et al. Geoderma, 2017, 306: 108.
[2] Chakraborty S, Weindorf D C, Deb S, et al. Geoderma, 2017, 289: 72.
[3] Gujre Nihal, Mitra Sudip, Soni Ankit, et al. Chemosphere, 2021, 262(5): 128013.
[4] Fu Z S, Xi S H. Toxicol. Mech. Methods, 2020, 30(3): 167.
[5] Fei X, Christakos G, Xiao R, et al. Science of the Total Environment, 2019, 661: 168.
[6] Liu Y X, Sun X Y, Li S, et al. Environ. Sci. Pollut. R, 2020, 27(7): 7693.
[7] Jin Z M, Deng S Q, Wen Y C, et al. Sci. Total Environ., 2019, 697: 134148.
[8] Fu P, Zhang W, Yang K M, et al. Ecotoxicology and Environmental Safety, 2020, 206: 111211.
[9] Hou L, Li X, Li F. Journal of Environment Quality, 2019, 48(1): 57.
[10] Jin M, Liu X N, Zhang B Y. IEEE J-Stars, 2017, 10(7): 3232.
[11] YANG Ke-ming, GAO Wei, CHEN Gai-ying, et al(杨可明, 高 伟, 陈改英, 等). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2021, 52(6): 215.
[12] HUANG Zhong-ting, YI Sheng-wei, CHEN Bei-bei, et al(黄钟霆, 易盛炜, 陈贝贝, 等). Environmental Science(环境科学), 2022, 42(2): 975.
[13] Huang Z, Turner B J, Dury S J, et al. Remote Sensing of Environment, 2004, 93(1-2): 18.
[14] Wang J Z, Tiyip T, Ding J L, et al. PLOS ONE, 2017, 12(9): e0184836.
[15] Chen J M. Canadian Journal of Remote Sensing, 1996, 22(3): 229.
[16] FAN Jing-jing, WANG Li, CHU Wen-bo, et al(范晶晶, 王 力, 褚文博, 等). Automotive Engineering(汽车工程), 2019,(12): 1410.
|
[1] |
FAN Ping-ping,LI Xue-ying,QIU Hui-min,HOU Guang-li,LIU Yan*. Spectral Analysis of Organic Carbon in Sediments of the Yellow Sea and Bohai Sea by Different Spectrometers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 52-55. |
[2] |
YANG Chao-pu1, 2, FANG Wen-qing3*, WU Qing-feng3, LI Chun1, LI Xiao-long1. Study on Changes of Blue Light Hazard and Circadian Effect of AMOLED With Age Based on Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 36-43. |
[3] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[4] |
LI Qi-chen1, 2, LI Min-zan1, 2*, YANG Wei2, 3, SUN Hong2, 3, ZHANG Yao1, 3. Quantitative Analysis of Water-Soluble Phosphorous Based on Raman
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3871-3876. |
[5] |
LIANG Jin-xing1, 2, 3, XIN Lei1, CHENG Jing-yao1, ZHOU Jing1, LUO Hang1, 3*. Adaptive Weighted Spectral Reconstruction Method Against
Exposure Variation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3330-3338. |
[6] |
MA Qian1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, CHENG Hui-zhu1, 2, ZHAO Yan-chun1, 2. Research on Classification of Heavy Metal Pb in Honeysuckle Based on XRF and Transfer Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2729-2733. |
[7] |
HUANG Chao1, 2, ZHAO Yu-hong1, ZHANG Hong-ming2*, LÜ Bo2, 3, YIN Xiang-hui1, SHEN Yong-cai4, 5, FU Jia2, LI Jian-kang2, 6. Development and Test of On-Line Spectroscopic System Based on Thermostatic Control Using STM32 Single-Chip Microcomputer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2734-2739. |
[8] |
ZHENG Yi-xuan1, PAN Xiao-xuan2, GUO Hong1*, CHEN Kun-long1, LUO Ao-te-gen3. Application of Spectroscopic Techniques in Investigation of the Mural in Lam Rim Hall of Wudang Lamasery, China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2849-2854. |
[9] |
WANG Jun-jie1, YUAN Xi-ping2, 3, GAN Shu1, 2*, HU Lin1, ZHAO Hai-long1. Hyperspectral Identification Method of Typical Sedimentary Rocks in Lufeng Dinosaur Valley[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2855-2861. |
[10] |
WANG Jing-yong1, XIE Sa-sa2, 3, GAI Jing-yao1*, WANG Zi-ting2, 3*. Hyperspectral Prediction Model of Chlorophyll Content in Sugarcane Leaves Under Stress of Mosaic[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2885-2893. |
[11] |
WANG Yu-qi, LI Bin, ZHU Ming-wang, LIU Yan-de*. Optimizations of Sample and Wavelength for Apple Brix Prediction Model Based on LASSOLars Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1419-1425. |
[12] |
LI Shuai-wei1, WEI Qi1, QIU Xuan-bing1*, LI Chuan-liang1, LI Jie2, CHEN Ting-ting2. Research on Low-Cost Multi-Spectral Quantum Dots SARS-Cov-2 IgM and IgG Antibody Quantitative Device[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1012-1016. |
[13] |
JIN Cui1, 4, GUO Hong1*, YU Hai-kuan2, LI Bo3, YANG Jian-du3, ZHANG Yao1. Spectral Analysis of the Techniques and Materials Used to Make Murals
——a Case Study of the Murals in Huapen Guandi Temple in Yanqing District, Beijing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1147-1154. |
[14] |
DING Kun-yan1, HE Chang-tao2, LIU Zhi-gang2*, XIAO Jing1, FENG Guo-ying1, ZHOU Kai-nan3, XIE Na3, HAN Jing-hua1. Research on Particulate Contamination Induced Laser Damage of Optical Material Based on Integrated Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1234-1241. |
[15] |
ZHANG Chao1*, SU Xiao-yu1, XIA Tian2, YANG Ke-ming3, FENG Fei-sheng4. Monitoring the Degree of Pollution in Different Varieties of Maize Under Copper and Lead Stress[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1268-1274. |
|
|
|
|