光谱学与光谱分析 |
|
|
|
|
|
X-Ray Fluorescence Spectrum Studies on Bioorganic Carbon in Cereals and Carbon Chemical Circulation |
DUAN De-liang1, BIAN Fu-yong1, YUAN Bo1, WANG Shu2, GE Mao-fa2, ZHANG Xing-kang2, XU Si-chuan1, 2* |
1. Key Laboratory of Ministry of Education for Medicinal Chemistry of Natural Resource, College of Chemical Science and Technology, Yunnan University, Kunming 650091, China 2. State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China |
|
|
Abstract The bioorganic carbon contents and chemical element compositions in six kinds of cereals: paddy (rice), wheat (flour), soybean, millet, sorghum and corn were determined by X-ray fluorescence (XRF) spectrum, meanwhile a new method was established to probe their protein contents. In the cereals, the average bioorganic carbon content is about 44%. The highest protein content is 42.74% from soybean, and other protein content is 28.56% in millet, 27.57% in wheat, 24.99% in corn, 22.21% in sorghum, but only 20.31% in rice. Based on our new definition of carbon chemical circulation presented in the current work, the authors have found that in 2009 humankind used bioorganic carbon to discharge CO2 into the earth’s atmosphere that accounts for one percent of the total CO2 discharge, and consumed organic carbon to release CO2 into the earth’s atmosphere, accounting for 10.73% of the total CO2 discharge. The clear definition of carbon chemical circulation and the discharged CO2 content from the distinct types of carbon compounds would advance the study on carbon chemical circulation and the atmospheric CO2 greenhouse effect. Our work further found that it takes eight years to circulate the total earth’s atmospheric CO2. The short period shows the sensitivity for CO2 to keep its dynamical equilibrium in the earth’s atmosphere. However, no experimental data has been reported to prove a heavy destructive greenhouse effect of CO2 existing in the earth’s atmosphere.
|
Received: 2010-07-14
Accepted: 2010-10-26
|
|
Corresponding Authors:
XU Si-chuan
E-mail: sichuan@ynu.edu.cn;xusc1@yahoo.com.cn
|
|
[1] Piao S, Fang J, Ciais P, et al. Nature, 2009, 458: 1009. [2] XU Yong-fu(徐永福). Advances in Earth Sciences(地球科学进展), 1995, 10: 367. [3] LI Ye-bo(李耶波). Advances in Ecology(生态学进展), 1989, 6: 96. [4] ZHANG Jia-hua, BIAN Lin-gen, SONG Xiao-dong, et al(张佳华, 卞林根, 宋晓冬, 等). Meteorogica Sinica(气象科学), 2006, 26: 350. [5] LIN Hui-long, WANG Jun, XU Zhen, et al(林慧龙, 王 军, 徐 震, 等). Pratacultural Sciences(草业科学), 2005, 22: 59. [6] ZHOU Jian-fen, GUAN Dong-sheng(周剑芬, 管东生). Ecology and Environment(生态环境), 2004, 13: 674. [7] LI Ming-feng, DONG Yun-she, GENG Yuan-bo, et al(李明峰, 董云社, 耿元波, 等). Scientia Agricultural Sinica(中国农业科学), 2004, 37: 1722. [8] LI Xue-gang, LI Ning, SONG Jin-ming(李学刚, 李 宁, 宋金明). Chinese Journal of Analytical Chemistry(分析化学), 2004, 32: 425. [9] SUN Gu-chou, ZHAO Ping, ZENG Xiao-ping, et al(孙谷畴, 赵 平, 曾小平, 等). Chinese Journal of Applied Ecology(应用生态学报), 2001, 12: 429. [10] ZHANG Hong-bo, GUAN Dong-sheng, ZHENG Shu-ying(张洪波, 管东生, 郑淑颖). Tropical Geography(热带地理), 2001, 21: 178. [11] ZHOU Yu-rong, YU Zhen-liang, ZHAO Shi-dong(周玉荣, 于振良, 赵士洞). Acta Phytoecologica Sinica(植物生态学报), 2000, 24: 518. [12] YUAN Bo, XU Ze-ren, XIE Zhuo-jun, et al(袁 波, 徐泽人, 谢卓君, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2010, 30: 1983. [13] Randolph V L. Chem. Rev., 2006, 106: 3762. [14] ZHAO Tian-hong, HUANG Guo-hong(赵天宏, 黄国宏). Crops(作物杂志), 2003, 3: 1. [15] Kimball B A, Manuey J R, Nakayoma F S, et al. Vegetatio, 1993, 104/105: 65. [16] Frisch M J, Trucks G W, Schlegel H B, et al. G03 Rev D01, Gaussian, Inc, Wallingford CT, 2004. [17] JIANG Zhi-hong, Ding Yu-guo(江志红, 丁裕国). Journal of Applied Meteorological Sciences(应用气象学报), 1999, 10: 151. [18] Karl T R, Jones P D, Knight R W, et al. Bull. Amer. Meteor. Soc., 1993, 76: 1007. [19] XIE Zhuang, CAO Hong(谢 庄, 曹 鸿). Acta Meteorologica Sinica(气象学报), 1996, 54: 501.
|
[1] |
WANG Yu1, 2, ZHANG Xian-ke1, 2, TAN Tu1, WANG Gui-shi1, LIU Kun1, SUN Wan-qi3*, QIU Zi-chen4, GAO Xiao-ming1, 2. Research on Moving Observation of Typical Greenhouse Gas Sources in Hefei by Using Off-Axis Integrated Cavity[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3293-3301. |
[2] |
YUAN Kai-xin, ZHUO Jin, ZHANG Qing-hua, LI Ya-guo*. Study on the Spectral and Laser Damage Resistance of CO2 Laser Modified Sol-Gel SiO2 Thin Films[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1752-1759. |
[3] |
WANG Shu-ying*, YOU De-chang, MA Wen-jia, YANG Ruo-fan, ZHANG Yang-zhi, YU Zi-lei, ZHAO Xiao-fang, SHEN Yi-fan. Experimental Collisional Energy Transfer Distributions for Collisions of CO2 With Highly Vibrationally Excited Na2[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1760-1764. |
[4] |
FU Wan-lu1, 2, LU Hao3*, CHAI Jun4, SUN Zuo-yu1. Spectroscopic Characteristics of Longxi Nephrite From Sichuan and Its Color Genesis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1408-1412. |
[5] |
WANG Mei-li1, 2, SHI Guang-hai2*, ZHANG Xiao-hui1, YANG Ze-yu2, 3, XING Ying-mei1. Experimental Study on High-Temperature Phase Transformation of Calcite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1205-1211. |
[6] |
YUAN Liang-jing1, JIA Yun-hai1, 2, CHENG Da-wei1, 2*. Study on Methods of Detection Limit in XRF Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 412-418. |
[7] |
LIANG Jia-xiang1, WANG Tian1*, ZHANG Ya-xu2, WANG Fen1, LI Qiang3, LUO Hong-jie3, ZHAO Xi-chen2, ZHU Jian-feng1 . Study of the Painted Warrior Figurines Excavated in the Tomb of the
Sutong Family (Tang Dynasty) by Spectroscopic Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 175-182. |
[8] |
XIANG Xiong-zhi1, ZHONG Rong-qu1, GAO Shi-han1, SU Xiao-wei1, CHE Da2*. XRF Analysis of the Whole-Area Component of the Oil Painting “Lady in Evening Dress”[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3913-3916. |
[9] |
LU Hao1, FU Wan-lu2, 3*, CHAI Jun2, LIU Shuang2, SUN Zuo-yu2. Analysis of Sandstone in Leshan Giant Buhhda Based on Hand-Held
X-Ray Fluorescence Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2506-2512. |
[10] |
OUYANG Zhou-xuan, MA Ying-jie, LI Dou-dou, LIU Yi. The Research of Polarized Energy Dispersive X-Ray Fluorescence for Measurement Trace Cadmium by Geant4 Simulation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1064-1069. |
[11] |
DU Bao-lu, LI Meng, GUO Jin-jia*, ZHANG Zhi-hao, YE Wang-quan, ZHENG Rong-er. The Experimental Research on In-Situ Detection for Dissolved CO2 in
Seawater Based on Tunable Diode Laser Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1264-1269. |
[12] |
YANG Jiong1, 2, QIU Zhi-li1, 4*, SUN Bo3, GU Xian-zi5, ZHANG Yue-feng1, GAO Ming-kui3, BAI Dong-zhou1, CHEN Ming-jia1. Nondestructive Testing and Origin Traceability of Serpentine Jade From Dawenkou Culture Based on p-FTIR and p-XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 446-453. |
[13] |
LIU Ming-bo1,2, LIAO Xue-liang2, CHENG Da-wei1,2, NI Zi-yue1,2, WANG Hai-zhou1,2*. An EDXRF Quantitative Algorithm Based on Fundamental Parameters and Spectrum Unfolding[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2807-2811. |
[14] |
HUANG Ke-jia1, DU Jing2, ZHU Jian3*, LI Nai-sheng2, CHEN Yue2, WU Yuan-yuan4. Mapping Analysis by μ-X-Ray Fluorescence for Waterlogged Archaeological Wood From “Nanhai No.1” Shipwreck[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2930-2933. |
[15] |
ZHAO Ting1,2,3, CHI Hai-tao1,2,3*, LIU Yi-ren1,2,3, GAO Xia1,2,3, HUANG Zhao1,2,3, ZHANG Mei1,2,3, LI Qin-mei1,2,3. Determination of Elements in Health Food by X-Ray Fluorescence Microanalysis Combined With Inductively Coupled Plasma Mass Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 750-754. |
|
|
|
|