光谱学与光谱分析 |
|
|
|
|
|
Multicomponent Quantitative Analysis Using Near Infrared Spectroscopy by Building PLS-GRNN Model |
LIU Bo-ping1,2,QIN Hua-jun3,LUO Xiang2,4,CAO Shu-wen3,WANG Jun-de1* |
1. College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210014,China 2. Analytical and Testing Center of Jiangxi Province, Nanchang 330029, China 3. Key Laboratory of Food Science of MOE, Nanchang University, Nanchang 330047, China 4. Department of Chemistry, Nanchang University, Nanchang 330047, China |
|
|
Abstract The present paper introduces an application of near infrared spectroscopy(NIRS) multi-component quantitative analysis by building partial least squares (PLS)-generalized regression neural networks (GRNN) model. The PLS-GRNN prediction model for chlorine, fibre and fat in 45 feedstuff samples was established with good veracity and recurrence. Eight peak values in principal components compressed from original data by PLS and four in original spectra were taken as inputs of GRNN while 4 predictive targets as outputs. 0.1 was chosen as smoothing factor for its good approximation and prediction with the lowest error compared with 0.2, 0.3, 0.4 and 0.5. Predictive correlation coefficient and Standard error of the estimate of three components by the model are 0.984 0, 0.987 0 and 0.983 0, and 0.015 89, 0.154 1 and 0.115 1,while the Standard deviations of an unknown sample scanned 8 times are 0.003 26, 0.065 5 and 0.031 4. The results show that PLS-GRNN used in NIRS is a rapid, effective means for measuring chlorine, fibre in the fat in feedstuff powder, and can also be used in quantitative analysis of other samples. A settlement in the high error of prediction of other samples with lower contents was also shown.
|
Received: 2006-05-10
Accepted: 2006-08-20
|
|
Corresponding Authors:
WANG Jun-de
E-mail: jdwang@mail.njust.edu.cn
|
|
Cite this article: |
LIU Bo-ping,QIN Hua-jun,LUO Xiang, et al. Multicomponent Quantitative Analysis Using Near Infrared Spectroscopy by Building PLS-GRNN Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2007, 27(11): 2216-2220.
|
|
|
|
URL: |
https://www.gpxygpfx.com/EN/Y2007/V27/I11/2216 |
[1] XU Guang-tong, YUAN Hong-fu, LU Wan-zhen(徐广通, 袁洪福, 陆婉珍). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2000, 20(2): 134. [2] McClure W F, Crowell B, Stanfield D L, et al. Journal of Near Infrared Spectrosc., 2002, 10: 177. [3] CHENG Zhong, CHEN De-zhao(成 忠, 陈德钊). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2006, 26(6): 1046. [4] HE Yong, LI Xiao-li, SHAO Yong-ni(何 勇, 李晓丽, 邵咏妮). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2006, 26(5): 853. [5] Yande Liu, Yibin. Postharvest Biology and Technology, 2005, 37: 65. [6] Marin Navrtil, Anna Norberg, Lars Lembrn, et al. Journal of Biotechnology, 2005, 115(1): 67. [7] ZHANG Lin, ZHANG Li-ming, LI Yan, et al(张 琳, 张黎明, 李 燕, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2005, 20(6): 775. [8] LI Yan, SUN Xiu-yun, WANG Jun-de(李 燕, 孙秀云, 王俊德). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2000, 25(10): 1610. [9] Melkon Tatlier, Kerem H Cigizoglu, Ayse, Erdem-Senatalar. Computers and Chemical Engineering, 2005, 30: 137. [10] Gavin J Bowden, Holger R Maier, Graeme C Dandy. Journal of Hydrology, 2005, 301: 93. [11] Cigizoglu H K, Alp M. Advances in Engineering Software, 2006, 37(2): 63. [12] Savita G Kulkarni, Amit Kumar Chaudhary, Somnath Nandi, et al. Biochemical Engineering Journal, 2004, 18: 193. [13] YANG Jian-gang(杨建刚). Applied Tutorial of Artificial Neural Networks(人工神经网络实用教程). Hangzhou: Zhejiang University Press(杭州: 浙江大学出版社), 2001. [14] W M Lee, Lee Y Y, Lim C P, et al. Advanced Engineering Informatics. 2006, 20(2): 213. [15] LIN Hong-bo, LI Yue, MA Hai-tao, et al(林红波,李 月,马海涛,等). Progress in Geophysics(地球物理学进展),2003,18(4):743. [16] WANG Cun-you, YU Jia-yuan(汪存友,余嘉元). Computer Applications(计算机应用),2006,26(4):992. |
[1] |
GAO Feng1, 2, XING Ya-ge3, 4, LUO Hua-ping1, 2, ZHANG Yuan-hua3, 4, GUO Ling3, 4*. Nondestructive Identification of Apricot Varieties Based on Visible/Near Infrared Spectroscopy and Chemometrics Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 44-51. |
[2] |
LI Yu1, ZHANG Ke-can1, PENG Li-juan2*, ZHU Zheng-liang1, HE Liang1*. Simultaneous Detection of Glucose and Xylose in Tobacco by Using Partial Least Squares Assisted UV-Vis Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 103-110. |
[3] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[4] |
HU Cai-ping1, HE Cheng-yu2, KONG Li-wei3, ZHU You-you3*, WU Bin4, ZHOU Hao-xiang3, SUN Jun2. Identification of Tea Based on Near-Infrared Spectra and Fuzzy Linear Discriminant QR Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3802-3805. |
[5] |
LIU Xin-peng1, SUN Xiang-hong2, QIN Yu-hua1*, ZHANG Min1, GONG Hui-li3. Research on t-SNE Similarity Measurement Method Based on Wasserstein Divergence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3806-3812. |
[6] |
LIU Hao-dong1, 2, JIANG Xi-quan1, 2, NIU Hao1, 2, LIU Yu-bo1, LI Hui2, LIU Yuan2, Wei Zhang2, LI Lu-yan1, CHEN Ting1,ZHAO Yan-jie1*,NI Jia-sheng2*. Quantitative Analysis of Ethanol Based on Laser Raman Spectroscopy Normalization Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3820-3825. |
[7] |
BAI Xue-bing1, 2, SONG Chang-ze1, ZHANG Qian-wei1, DAI Bin-xiu1, JIN Guo-jie1, 2, LIU Wen-zheng1, TAO Yong-sheng1, 2*. Rapid and Nndestructive Dagnosis Mthod for Posphate Dficiency in “Cabernet Sauvignon” Gape Laves by Vis/NIR Sectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3719-3725. |
[8] |
WANG Qi-biao1, HE Yu-kai1, LUO Yu-shi1, WANG Shu-jun1, XIE Bo2, DENG Chao2*, LIU Yong3, TUO Xian-guo3. Study on Analysis Method of Distiller's Grains Acidity Based on
Convolutional Neural Network and Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3726-3731. |
[9] |
LUO Li, WANG Jing-yi, XU Zhao-jun, NA Bin*. Geographic Origin Discrimination of Wood Using NIR Spectroscopy
Combined With Machine Learning Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3372-3379. |
[10] |
ZHANG Shu-fang1, LEI Lei2, LEI Shun-xin2, TAN Xue-cai1, LIU Shao-gang1, YAN Jun1*. Traceability of Geographical Origin of Jasmine Based on Near
Infrared Diffuse Reflectance Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3389-3395. |
[11] |
YANG Qun1, 2, LING Qi-han1, WEI Yong1, NING Qiang1, 2, KONG Fa-ming1, ZHOU Yi-fan1, 2, ZHANG Hai-lin1, WANG Jie1, 2*. Non-Destructive Monitoring Model of Functional Nitrogen Content in
Citrus Leaves Based on Visible-Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3396-3403. |
[12] |
LIN Hong-jian1, ZHAI Juan1*, LAI Wan-chang1, ZENG Chen-hao1, 2, ZHAO Zi-qi1, SHI Jie1, ZHOU Jin-ge1. Determination of Mn, Co, Ni in Ternary Cathode Materials With
Homologous Correction EDXRF Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3436-3444. |
[13] |
HUANG Li, MA Rui-jun*, CHEN Yu*, CAI Xiang, YAN Zhen-feng, TANG Hao, LI Yan-fen. Experimental Study on Rapid Detection of Various Organophosphorus Pesticides in Water by UV-Vis Spectroscopy and Parallel Factor Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3452-3460. |
[14] |
HUANG Meng-qiang1, KUANG Wen-jian2, 3*, LIU Xiang1, HE Liang4. Quantitative Analysis of Cotton/Polyester/Wool Blended Fiber Content by Near-Infrared Spectroscopy Based on 1D-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3565-3570. |
[15] |
HUANG Zhao-di1, CHEN Zai-liang2, WANG Chen3, TIAN Peng2, ZHANG Hai-liang2, XIE Chao-yong2*, LIU Xue-mei4*. Comparing Different Multivariate Calibration Methods Analyses for Measurement of Soil Properties Using Visible and Short Wave-Near
Infrared Spectroscopy Combined With Machine Learning Algorithms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3535-3540. |
|
|
|
|