|
|
|
|
|
|
Research Progress for Online Monitoring and Calibration Technology on Microbial Aerosol With Fluorescence Method |
HU Xing-zhi1, 2, LIU Xiao-meng2*, ZHANG Sheng-zi2, XIANG Jun1, WANG Hong-jun2 |
1. School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China
2. Institute of Thermal Metrology, National Institute of Metrology, China, Beijing 100029, China
|
|
|
Abstract Microbial aerosol surveillance is essential to ensure national security and human health. The online monitoring method based on fluorescence detection technology stands out in microbial aerosol monitoring due to its advantages of fast response, strong portability, and high sensitivity. This method accurately identifies individual bioaerosol particles and monitors real-time aerosol content in the environment. Its working principle is to use ultraviolet lasers to induce the intrinsic fluorescence of bioparticles and then detect the intrinsic fluorescence signals to achieve the identification of bioparticles. Although fluorescence online monitoring equipment has significant advantages in monitoring the concentration and particle size of biological particles in ambient air, the technological development in this field in China is still in its infancy. In the past 20 years, significant progress has been made in laser-induced online monitoring of microbial aerosols. These advances are mainly reflected in the optimization of excitation light cost, the subdivision of detection sorting channels, and the advancement of robotics and algorithm programming languages. However, the quantitative application of these instruments is limited by the lack of standard fluorescence calibration methods, which also increases the complexity of comparing different measurements. With the widespread application of online monitoring instruments, fluorescence aerosol detection instruments' performance evaluation and calibration technology have gradually attracted attention. The calibration research on fluorescence bioaerosol detection systems is still in its infancy, and no unified performance evaluation criteria have yet been formed. This paper briefly introduces the development of fluorescence online monitoring instruments, the research status of fluorescence-based single-particle online monitoring, and its calibration technology, which is summarized for the first time. It provides strong support for developing microbial aerosol detection technology and establishing a performance evaluation system for microbial aerosol detection instruments.
|
Received: 2024-06-07
Accepted: 2024-10-23
|
|
Corresponding Authors:
LIU Xiao-meng
E-mail: liuxiaom@nim.ac.cn
|
|
[1] Ge Z Y, Yang L M, Xia J J, et al. Journal of Zhejiang University—Science B, 2020, 21(5): 361.
[2] Wang C T, Fu S C, Chao C Y H. Aerosol Science and Technology, 2021, 55(2): 215.
[3] Tegen I, Schepanski K. Current Climate Change Reports, 2018, 4(1): 1.
[4] Qiao H, Zhen X H. Journal of Thoracic Disease, 2018, 10(Suppl. 19): S2295.
[5] de Matos Nascimento A, de Paula V R, Dias E H O, et al. Science of the Total Environment, 2020, 745: 140711.
[6] Yang K X, Li L, Xue S, et al. Process Safety and Environmental Protection, 2019, 129: 55.
[7] Tian J H, Yan C, Nasir Z A, et al. Science of the Total Environment, 2020, 721: 137629.
[8] Shen F X, Yao M S. National Science Open, 2023, 2(4): 20220050.
[9] Chen L W A, Zhang M, Liu T, et al. Atmospheric Environment, 2019, 213: 620.
[10] Agranovski I E, Usachev E V. Atmospheric Environment, 2021, 246: 118147.
[11] Chirskaya V V, Margaryants N B, Zhukova E V. Journal of Physics: Conference Series, 2016, 735(1): 12084.
[12] Chu X, Awasthi M K, Liu Y, et al. Bioresource Technology, 2021, 320(Pt A): 124174.
[13] Huang Z, Yu X, Liu Q, et al. Science of the Total Environment, 2024, 912: 168818.
[14] Pöhlker C, Huffman J A, Pöschl U. Atmospheric Measurement Techniques, 2012, 5(1): 37.
[15] Bourouiba L. The Journal of the American Medical Association, 2020, 323(18): 1837.
[16] Lu H L, Su Z M, Li L, et al. Analytical Chemistry, 2022, 94(51): 17861.
[17] Gabbarini V, Rossi R, Ciparisse J, et al. Scientific Reports, 2019, 9(1): 12598.
[18] LI Xiao-nan, RAN Bin, WU Wen-jian, et al(李笑楠, 冉 斌, 吴文健, 等). Military Medical Sciences(军事医学), 2018, 42(6): 464.
[19] CAI Shu-yao, ZHANG Pei, ZHU Ling-lin, et al(蔡舒窈, 张 佩, 朱玲琳, 等). Acta Optica Sinica(光学学报), 2012, 32(5): 0512009.
[20] GE Lin-lin, DING Lei, YAN Jing, et al(葛琳琳, 丁 蕾, 闫 静, 等). Journal of Atomic and Molecular Physics(原子与分子物理学报), 2013, 30(1): 125.
[21] GUO He-qing, ZHANG Sheng-zi, LIU Xiao-meng, et al (郭和庆, 张圣梓, 刘晓萌, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2023, 43(8): 2339.
[22] FANG Le-tian, LIU Wen-bin, DING Yi-bo, et al(方乐天, 刘文斌, 丁一波, 等). Academic Journal of Naval Medical University(海军军医大学学报), 2023, 44(9): 1086.
[23] LU Wei-lai, XU Tian-shun, TANG Hui, et al(卢维来, 许添顺, 汤 晖, 等). Acta Microbiologica Sinica(微生物学报), 2022, 62(4): 1345.
[24] Cho Y S, Kim H R, Ko H S, et al. ACS Sensors, 2020, 5(2): 395.
[25] Kaye P, Stanley W R, Hirst E, et al. Optics Express, 2005, 13(10): 3583.
[26] Chen G, Nachman P, Pinnick R G, et al. Optics Letters, 1996, 21(16): 1307.
[27] Hairston P P, Ho J, Quant F R. Journal of Aerosol Science, 1997, 28(3): 471.
[28] Saari S, Niemi J, Ronkko T, et al. Aerosol and Air Quality Research, 2015, 15(2): 572.
[29] Ma Y, Wang Z, Yang D, et al. Science of the Total Environment, 2019, 656: 447.
[30] Ruske S, Topping D O, Foot V E, et al. Atmospheric Measurement Techniques, 2018, 11(11): 6203.
[31] Könemann T, Savage N, Klimach T, et al. Atmospheric Measurement Techniques, 2019, 12(2): 1337.
[32] Nasir Z A, Hayes E, Williams B, et al. Science of the Total Environment, 2019, 648: 25.
[33] Zhu X, Zhang P, Wang G, et al. Optical Engineering, 2022, 61(6): 64101.
[34] Jeong Y, Lee J M, Park J, et al. Instrumentation Science & Technology, 2020, 48(4): 417.
[35] Greenwood D P, Jeys T H, Johnson B, et al. Proceedings of the IEEE, 2009, 97(6): 971.
[36] Ryškevič N, Jurš nas S, Vitta P, et al. Sensors and Actuators B: Chemical, 2010, 148(2): 371.
[37] Sivaprakasam V, Lin H B, Huston A L, et al. Optics Express, 2011, 19(7): 6191.
[38] Kiselev D, Bonacina L, Wolf J P. Review of Scientific Instruments, 2013, 84(3): 33302.
[39] Kaliszewski M, Włodarski M, Młyńczak J, et al. Journal of Aerosol Science, 2016, 100: 14.
[40] Sauliene I, Sukiene L, Daunys G, et al. Atmospheric Measurement Techniques, 2019, 12(6): 3435.
[41] Chen S, Jia Y, Chen H, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 277: 121260.
[42] ZHU Xin-qi, ZHANG Pei, WANG Guang-hui, et al(朱鑫琦, 张 佩, 王光辉, 等). Chinese Journal of Lasers(中国激光), 2023, 50(13): 1310005.
[43] WANG Yan-jie,LI Lin,XU Guang-su, et al(王彦杰, 李 琳, 许光素, 等). Microbiology China(微生物学通报), 2017, 44(3): 701.
[44] JJF1190-2008 Calibration Specification for Airborne Particle Counter(尘埃粒子计数器校准规范)[S].
[45] JJF 1562-2016 Calibration Specification for Condensation Particle Counters《凝结核粒子计数器校准规范》[S].
[46] Zhang P, Zhao Y, Liao X, et al. Optics Express, 2013, 21(22): 26303.
[47] Robinson E S, Gao R, Schwarz J P, et al. Atmospheric Measurement Techniques, 2017, 10(5): 1755.
[48] LI Na, LU Jian-chun, WEN Zhan-bo, et al(李 娜, 鹿建春, 温占波, 等). Military Medical Sciences(军事医学), 2011, 35(7): 527.
[49] Li N, Hu L F, Jin A J, et al. Journal of Biosafety and Biosecurity, 2019, 1(2): 90.
[50] Peck A, Handy R G, Sleeth D K, et al. Toxics, 2023, 11(1): 56.
[51] BAO Hai-xia, LI Long, WU Zhen-yi, et al(暴海霞, 厉 龙, 吴振一, 等). Metrology & Measurement Technique(计量与测试技术), 2023, 50(6): 22.
[52] Lieberherr G, Auderset K, Calpini B, et al. Atmospheric Measurement Techniques, 2021, 14(12): 7693.
[53] PAN Yi-ting, ZHANG Guo-cheng, YANG Zhen-qi, et al(潘一廷, 张国城, 杨振琪, 等). China Measurement & Test(中国测试), 2020, 46(10): 18.
[54] TIAN Ying, ZHANG Guo-cheng, WU Dan, et al(田 莹,张国城,吴 丹,等). Acta Metrologica Sinica(计量学报), 2022, 43(1): 140.
[55] Kovbasyuk I Y, Maslakov O Y, Shakhov M N. Journal of Physics, Conference Series, 2022, 2192(1): 12033.
[56] BAO Hai-xia, WEI En-ze, WU Zhen-yi, et al(暴海霞, 韦恩泽, 吴振一, 等). Metrology & Measurement Technique(计量与测试技术), 2022, 49(1): 13, 19.
[57] PAN Yi-ting, ZHANG Guo-cheng, HUO Sheng-wei, et al(潘一廷, 张国城, 霍胜伟, 等). Acta Metrologica Sinica(计量学报), 2023, 44(2): 279.
|
[1] |
ZHANG Xiao-ling1, WANG Si-qi1, ZHAO Nan-jing2*, YIN Gao-fang2, DONG Ming2, 3, WANG Xiang4, ZHANG Sheng-jun1, CHEN Wei-jie1. Construction Method and Application of a Standardized Phytoplankton Spectral Library Based on Uniform Interpolation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(05): 1225-1235. |
[2] |
RAO Zhi-min1, 2, LI Yi-cheng1, 2, MAO Jian-dong1, 2*, ZHAO Hu1, 2, LI Yi-xiu1, 2, ZHOU Chun-yan1, 2, GONG Xin1, 2. Application of Enhanced Photoelectric Coupling and Multi Anode
Photoelectric Multiplier Tube Detectors in Biological Aerosol
Fluorescence Spectrum Lidar[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(04): 1088-1095. |
[3] |
HE Xuan, OU Li-juan*, XIE Yu-dan, LUO Jian-xin, DU Cong, ZHANG Chun-yan. The Cysteine-Protected Copper Nanoclusters for Rapid Detection of p-Nitrophenol[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(12): 3387-3390. |
[4] |
ZHU Shao-hao1, SUN Xue-ping1, TAN Jing-ying1, YANG Dong-xu1, WANG Hai-xia2*, WANG Xiu-zhong1*. Study on a New Sensing Method of Colorimetric and Fluorescence Dual Modes for Pesticide Residue[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2785-2791. |
[5] |
GUO He-qing1, 2, ZHANG Sheng-zi2*, LIU Xiao-meng2, JING Xu-feng1, WANG Hong-jun2. Research Progress of the Real-Time Detection System of Bioaerosols Based on Fluorescence Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2339-2347. |
[6] |
OU Li-juan1*, LI Jing1, ZHANG Chao-qun1, LUO Jian-xin1, WEI Ji1, WANG Hai-bo2*, ZHANG Chun-yan1. Redox-Controlled Turn-on Fluorescence Sensor for H2O2 and Glucose Using DNA-Template Gold Nanoclusters[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3757-3761. |
[7] |
LIU Pan1, 2, DU Mi-fang1, LI Zhi-ya1, GAO Ling-qing1, 3, HAN Hua-yun4, ZHANG Xin-yao1, 3. Determination of Trace Tellurium Content in Steel by Hydride Generation Atomic Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3103-3108. |
[8] |
OU Li-juan, AN Xue-zhong, LUO Jian-xin, WANG Ling-yun, BO Heng, SUN Ai-ming, CHEN Lan-lan. High-Sensitive and Rapid Fluorescencet Detection of Hg2+ Based on Poly(adenine)-Templated Gold Nanoclusters[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(01): 164-167. |
[9] |
GONG Ai-qin1*, JIN Dang-qin1, ZHU Xia-shi2. A Fluorescence Spectroscopic Study of the Interaction between Trelagliptin Succinate and Bovin Serum Albumine and Its Analytical Application[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(01): 157-160. |
[10] |
MA Xue-hong1, SONG Bai-ling2, XIAO Wen-jun2, GENG Jing2, LI Xin-xia1*, CHEN Jian3. Study on Interaction between Alliin and Bovine and Hunman Serum Albumin with Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(06): 1826-1830. |
[11] |
ZHANG Li-hua1, Arkin IBURAIM2* . The Establishment of the Method of the Fiber Optic Chemical Sensor Synchronous Absorption-Fluorescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(03): 755-758. |
[12] |
XIONG Chao1,2, GE Liang-quan1*, LIU Duan3, ZHANG Qing-xian1, GU Yi1, LUO Yao-yao1, ZHAO Jian-kun1 . Influence of the Experiment Energy Dispersive X-Ray Fluorescence Measurement of Uranium by Different Excitation Source[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(03): 838-841. |
[13] |
LIANG Ai-hui1, LI Yuan1, HUANG Shan-shan1, LUO Yang-he1, 2, WEN Gui-qing1, JIANG Zhi-liang1* . Fluorescence Determination of Trace Se with the Hydride-KI3-Rhodamine 6G System [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(05): 1306-1308. |
[14] |
WANG Ji-xun, GAO Xun*, LI Qi, ZHENG Yi-ni, LIN Jing-quan . Study of the Air Plasma Expansion Dynamics by Fluorescence Method [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(09): 2472-2475. |
[15] |
ZHOU Na1, 2, LUO He-dong2, LI Na1, 2, LI Yao-qun1* . Determination of Benzo(α)pyrene in Food with Microwave-Assisted Extraction[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(03): 787-790. |
|
|
|
|