|
|
|
|
|
|
Rapid Detection of Bacterial Conjunctivitis Pathogens Using SERS@Au Microarray Chip |
LIU Wen-bo, LI Han, XU Yuan-cong, LIU Meng-dong, WANG Hui-qin, LIN Tai-feng, ZHENG Da-wei, ZHANG Ping* |
College of Chemistry and Life Sciences, Beijing University of Technology, Beijing 100124, China
|
|
|
Abstract Acute bacterial conjunctivitis is a prevalent ocular disease that can lead to severe vision impairment if not promptly treated. The conventional diagnostic method for bacterial conjunctivitis still relies on microbial culture, which, although highly sensitive, is time-consuming, labor-intensive, and unable to meet the demand for rapid detection. In this study, we developed a SERS@Au microarray chip as an enhanced substrate for collecting the SERS spectra of conjunctivitis-associated bacteria, including Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Staphylococcus epidermidis. The results demonstrated that the SERS@Au microarray chip has an excellent enhancement effect, reproducibility, and stability. By selecting the Raman shifts from 400 to 1 800 cm-1 of pathogenic bacteria to perform an SVM model and OPLS-DA model, the discrimination accuracies achieved 97% and 90%, respectively. Detecting spiked tears using the SERS@Au microarrays chip can quickly, accurately, and conveniently screen pathogenic bacteria with simple culture. Collecting tears for direct testing is simple, painless, and non-destructive for patients. Combining the SERS@Au microarray with a portable Raman spectrometer is suitable for on-site screening of ophthalmic bacterial infections. Moreover, it enables the detection of mixed infections, thereby greatly enhancing overall efficiency in diagnosis and providing a valuable assistive tool for ophthalmic disease screening.
|
Received: 2024-02-06
Accepted: 2024-06-03
|
|
Corresponding Authors:
ZHANG Ping
E-mail: zplife@bjut.edu.cn
|
|
[1] Shekhawat N S, Shtein R M, Blachley T S, et al. Ophthalmology, 2017, 124(8): 1099.
[2] Varu D M, Rhee M K, Akpek E K, et al. Ophthalmology, 2019, 126(1): 94.
[3] Epling J. BMJ Clin. Evid., 2012, 20: 2012: 0704.
[4] Høvding G. Acta Ophthalmol, 2008, 86(1): 5.
[5] Sonoda K, Takeuchi Y. Am. Fam. Physician, 2023, 107(6): Online.
[6] Tsui E, Sella R, Tham V, et al. JAMA Ophthalmol., 2023, 141(12): 1140.
[7] Leung A K C, Hon K L, Wong A H C, et al. Recent. Pat. Inflamm. Allergy Drug Discov., 2018, 12(2): 120.
[8] Kuo M T, Lin C C, Liu H Y, et al. Invest. Ophthalmol. Vis. Sci., 2011, 52(7): 4942.
[9] Yue S, Fang J, Xu Z. Biosens Bioelectron, 2022, 198: 113822.
[10] LU Wen-jing, FANG Ya-ping, LIN Tai-feng, et al(路文静, 方亚平, 林太凤, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2023, 43(12): 3840.
[11] Choi S, Moon S W, Shin J H, et al. Analytical Chemistry, 2014, 86(22): 11093.
[12] Paugh J R, Alfonso G A, Nguyen A L, et al. Ocul. Surf., 2019, 17(1): 151.
[13] Suhalim J L, Parfitt G J, Xie Y, et al. Ocul. Surf., 2014, 12(1): 59.
[14] Adigal S S, Rizvi A, Rayaroth N V, et al. Expert. Rev. Mol. Diagn., 2021, 21(8): 767.
[15] Xie X, Chen C, Sun T, et al. Photodiagnosis Photodyn. Ther., 2020, 31: 101932.
[16] Kuo M T, Lin C C, Liu H Y, et al. Invest. Ophthalmol. Vis. Sci., 2012, 53(3): 1436.
[17] Wu W, Huang S, Xie X, et al. Photodiagnosis Photodyn. Ther., 2022, 37: 102689.
[18] Kim W, Lee J C, Shin J H, et al. Analytical Chemistry, 2016, 88(10): 5531.
[19] Lee P C, Meisel D. Physical Chemistry Chemical Physics, 1982, 86(17): 3391.
[20] Shi C, Zhu J, Xu M, et al. Scientific Programming, 2020, 8: 8841565.
[21] Jarvis R M, Brooker A, Goodacre R. Faraday Discussions, 2006, 132: 281.
[22] Santana D S E O F, Giana H E, Silveira L. Journal of Biomedical Optics, 2012, 17(10): 107004.
[23] Matanfack G A, Taubert M, Guo S, et al. Analytical Chemistry, 2020, 92(16): 11429.
[24] Ayala O D, Wakeman C A, Pence I J, et al. ACS Infectious Diseases, 2018, 4(8): 1197.
[25] Zheng D W, Liu X Y, Zhang P, et al. Journal of Nanoscience and Nanotechnology, 2018, 18(10): 6776.
[26] Schuster K C, Reese I, Urlaub E, et al. Analytical Chemistry, 2000, 72(22): 5529.
[27] Almeida M R, Correa D N, Rocha W F, et al. Microchemical Journal, 2013, 109(1): 170.
[28] Kahraman M, Yazici M M, Sahin F, et al. Langmuir, 2008, 24(3): 894.
[29] Lv X, Ge W, Li Q, et al. ACS Applied Materials & Interfaces, 2014, 6(14): 11025.
[30] Neugebauer U, Schmid U, Baumann K, et al. Chemphyschem, 2007, 8(1): 124.
|
[1] |
LIAO Xian-li1, 2, LAI Wan-chang1*, MA Shu-hao3, TANG Lin2. MC Simulation of Detection Conditions for EDXRF Analysis of Cd
Element in Wastewater Solution[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(02): 403-409. |
[2] |
XIAO Zhong-liang, YUAN Rong-yao, FU Zhuang, LIU Cheng, YIN Bi-lu, XIAO Min-zhi, ZHAO Ting-ting, KUANG Yin-jie, SONG Liu-bin*. Study on the Aging Behavior of Transformer Oil Based on Machine
Learning and Infrared Spectroscopy Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(02): 434-442. |
[3] |
SUN Yong-rong1, 2, QUAN Zhi-xi1, 2, DING Lin-zhi1, 2, FENG Shou-shuai1, 2, LONG Ling-feng1, 2, YANG Hai-lin1, 2*. A Model for Evaluating the Quality of Original Liquor Using
Three-Dimensional Fluorescence Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(12): 3391-3398. |
[4] |
WANG Yi-fei1, WANG Xiao-dong1, Zakhar Maletskyi2, WANG Sha-sha1, MA Ji-ping1*. Determination of Two Quinolone Antibiotics in Environmental Water Samples Using Fluorescence Spectrum Coupled With Support Vector
Machine Regression[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(12): 3576-3582. |
[5] |
YU Xin-ran1, 3, ZHAO Peng2, HUAN Ke-wei2, LI Ye2, JIANG Zhi-xia1, 3, ZHOU Lin-hua1, 3*. Research on Intelligent Algorithm of Near-Infrared Spectroscopy
Non-Invasive Detection Based on GA-SVR Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3020-3028. |
[6] |
CHEN Xiao-yu1, NING Xiao-dong1, LI Xin-yi2, DU Ya-xin1, KONG De-ming2*. Classification and Identification of Oil-in-Water Light Oil Emulsions Based on LIF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3064-3068. |
[7] |
QU Dong-ming, ZHANG Zi-yi, LIANG Jun-xuan, LIAO Hai-wen, YANG Guang*. Classification of Copper Alloys Based on Microjoule High Repetition
Laser-Induced Breakdown Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3222-3227. |
[8] |
WANG De-ying1, 2, SHENG Wan-li3, ZOU Ming-qiang1, PEI Jia-huan1, 2, LUO Yun-jing2, QI Xiao-hua1*. Research Progress of Detection Based on Hydrogel Surface Enhanced
Raman Spectroscopy (SERS) Substrate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(10): 2701-2708. |
[9] |
FANG Xiao-meng, WANG Hua-lai, XU Hui, HUANG Meng-qiang, LIU Xiang*. Identification and Detection of Multi-Component Trace Gases Based on Near-Infrared TDLAS Technology Based on SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(10): 2909-2915. |
[10] |
ZHANG Wei-wei, QU Yi, WANG Qiang, LÜ Ri-qin, GU Hai-yang, SHAO Juan, SUN Yan-hui*. Research on the Synchronous Fluorescence Spectroscopy Combined With Support Vector Machines for Intelligent Discrimination of Milk
Adulteration[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(09): 2428-2433. |
[11] |
LI Xuan1, GAN Shu1, 2*, YUAN Xi-ping2, 3, 4, YANG Min3, 4, GONG Wei-zhen1. Spectral Characteristic and Identification Modelling of Three Typical Wetland Vegetation Along the Seashore of the East Coast of the Erhai Lake[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(09): 2439-2444. |
[12] |
ZHAO Jing-rui1, WANG Ya-min1, YUAN Yu-xun1, YU Jing1, ZHAO Ming-hui1, DONG Juan1, 3, SUN Jing-tao1, 2, 3, 4*. Study on SERS Detection of Ethyl Carbamate in Grape Spirit[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(09): 2467-2475. |
[13] |
WEI Yu-lan, ZHANG Chen-jie, YUAN Ya-xian*, YAO Jian-lin*. In-Situ SERS Monitoring of SPR-Catalyzed Coupling Reaction of
p-Nitroiodobenzene on Noble Metal Nanoparticles[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(09): 2482-2487. |
[14] |
NI Xiao-fang1, 3, ZHANG Chang-bo1, 2, 3*, TANG Xiao-yong2*. Pattern Recognition-Based X-Ray Fluorescence Spectroscopy for Rapid Detection of Heavy Metals in Soil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(09): 2692-2700. |
[15] |
MA Huan-zhen1, 4, YAN Xin-ru1, 4, XIN Ying-jian3, 4, FANG Pei-pei1, 3, 4, WANG Hong-peng3, WANG Yi-an1, 4, DUAN Ming-kang3, 4, JIA Jian-jun3, HE Ji-ye2*, WAN Xiong1, 3*. Blood Identification Based on AFSA-SVM Dynamic Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(07): 1877-1882. |
|
|
|
|