|
|
|
|
|
|
Using Three-Dimensional Excitation-Emission Matrix to Study the Compositions of Dissolved Organic Matter in the Rhizosphere Soil of Continuous Cropping Peanuts With Different Health States |
LIU Tian-shun1, 2, LI Peng-fa1, 2, LI Gui-long1, 2, WU Meng1, LIU Ming1, LIU Kai1, 2, LI Zhong-pei1, 2* |
1. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
|
|
|
Abstract The soil-borne disease of continuous cropping peanut is serious, but the internal relationship between the occurrence of soil-borne disease and soil factors, especially the dissolved organic matter (DOM) composition of rhizosphere soil, is still unclear. In order to explore the effect of peanut diseases on the rhizosphere soil DOM composition, the rhizosphere soils of healthy and diseased peanut plants were collected from multiple locations in Yu Jiang county. Three-dimensional excitation-emission matrix (3DEEM) and parallel factor method (PARAFAC) were used to analyze the variations of DOM compositions among rhizosphere soils of diseased and healthy peanut plants. Results showed no significant difference in the basic properties of rhizosphere soil between healthy peanut and diseased peanut. Five DOM components, including tryptophan-like (C1), fulvic-like (C2), microbial-humic-like (C3), humic-like (C4) and tyrosine-like (C5) were identified, and the variations of DOM fluorescence component composition in the rhizosphere soil between healthy peanut and diseased peanut were significantly different. The tryptophan-like (C1) in the rhizosphere soil of healthy plants accounted for 53.79%, which was significantly higher than 25.72% in diseased plants, while the opposite trend appeared in other components; The BIX and HIX of DOM in the rhizosphere soil of healthy peanut were (0.95±0.03) and (1.87±0.25), respectively, which were significantly higher than (0.82±0.02) and (0.98±0.09) of diseased peanut. Higher BIX and HIX values could be an intrinsic signature to rhizosphere environment keeping healthy. The Principal Co-ordinates Analysis showed that the healthy group and the diseased group could be effectively differentiated by the fluorescence components characterized with the application of 3DEEM-PARAFAC. A significant correlation was found between peanut biomass and each component of DOM by Correlation Analysis. Furthermore, peanut biomass showed a significantly positive correlation with BIX and HIX, while the Mcknight index was only closely related to some soil properties. The Variance Partitioning Analysis showed that the explanation rate of peanut biomass to the variation of DOM composition was up to 40%. However, Soil properties could not significantly explain the variation of DOM composition, indicating that peanut growth status is an important factor affecting the DOM composition of rhizosphere soil. In summary, there is a correlation between peanut health and DOM composition with fluorescence characteristics of rhizosphere soil, which can provide a theoretical reference to understand the pathogenesis of peanut soil-borne diseases and guide the establishment of relevant scientific control schemes.
|
Received: 2020-12-31
Accepted: 2021-02-04
|
|
Corresponding Authors:
LI Zhong-pei
E-mail: zhpli@issas.ac.cn
|
|
[1] Liu J, Chen X F, Li D, et al. Journal of Soils and Sediments, 2020, 20(7): 2761.
[2] Kalbitz K, Schmerwitz J, Schwesig D, et al. Geoderma, 2003, 113(3-4): 273.
[3] Musadji N Y, Lemee L, Caner L, et al. Chemosphere, 2020, 240: 124808.
[4] TENG Ying, REN Wen-jie, LI Zhen-gao, et al(滕 应, 任文杰, 李振高, 等). Soils(土壤), 2015, 47(2): 259.
[5] Del Valle I, Webster T M, Cheng H Y, et al. Sci. Adv., 2020, 6(5): 12.
[6] Zhang Y L, Zhang E L, Yin Y, et al. Limnology and Oceanography, 2010, 55(6): 2645.
[7] LU Ru-kun(鲁如坤). Analytical Methods for Soil and Agricultural Chemistry(土壤农业化学分析方法). Beijing: China Agricultural Science and Technology Press(北京: 中国农业科学技术出版社),1999.
[8] Novara A, La Mantia T, Ruhl J, et al. Geoderma, 2014, 235: 191.
[9] Santos C H, Nicolodelli G, Romano R A, et al. J. Brazil. Chem. Soc., 2015, 26(6): 1136.
[10] McKnight D M, Boyer E W, Westerhoff P K, et al. Limnology and Oceanography, 2001, 46(1): 38.
[11] LIU Xiao-han, ZHANG Yun-lin, YIN Yan, et al(刘笑菡, 张运林, 殷 燕, 等). Transactions of Oceanology and Limnology(海洋湖沼通报), 2012, 134(3): 133.
[12] Stedmon C A, Bro R. Limnology and Oceanography: Methods, 2008, 6(11): 572.
[13] Coble P G. Chem. Rev., 2007, 107(2): 402.
[14] Shi J, Zhao Y, Wei D, et al. Environ. Sci. Pollut. Res. Int., 2019, 26(4): 3340.
[15] Scholthof K B. Nat. Rev. Microbiol., 2007, 5(2): 152.
[16] Fellman J B, Hood E, Spencer R G M. Limnology and Oceanography, 2010, 55(6): 2452.
[17] Crits-Christoph A, Diamond S, Butterfield C N, et al. Nature, 2018, 558(7710): 440.
[18] Wei Z, GU Y, Friman V P, et al. Science Advances, 2019, 5(9): eaaw0759.
[19] ZHU Zhen-ke, SHEN Bing-jie, GE Ti-da, et al(祝贞科, 沈冰洁, 葛体达, 等). Acta Ecologica Sinica(生态学报), 2016, 36(19): 5987.
[20] Liu H, Li J, Carvalhais L C, et al. New Phytologist, 2021, 229(5): 2873.
|
[1] |
LEI Hong-jun1, YANG Guang1, PAN Hong-wei1*, WANG Yi-fei1, YI Jun2, WANG Ke-ke2, WANG Guo-hao2, TONG Wen-bin1, SHI Li-li1. Influence of Hydrochemical Ions on Three-Dimensional Fluorescence
Spectrum of Dissolved Organic Matter in the Water Environment
and the Proposed Classification Pretreatment Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 134-140. |
[2] |
XIA Ming-ming1, 2, LIU Jia3, WU Meng1, 2, FAN Jian-bo1, 2, LIU Xiao-li1, 2, CHEN Ling1, 2, MA Xin-ling1, 2, LI Zhong-pei1, 2, LIU Ming1, 2*. Three Dimensional Fluorescence Characteristics of Soluble Organic Matter From Different Straw Decomposition Products Treated With Calcium Containing Additives[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 118-124. |
[3] |
GU Yi-lu1, 2,PEI Jing-cheng1, 2*,ZHANG Yu-hui1, 2,YIN Xi-yan1, 2,YU Min-da1, 2, LAI Xiao-jing1, 2. Gemological and Spectral Characterization of Yellowish Green Apatite From Mexico[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 181-187. |
[4] |
SONG Yi-ming1, 2, SHEN Jian1, 2, LIU Chuan-yang1, 2, XIONG Qiu-ran1, 2, CHENG Cheng1, 2, CHAI Yi-di2, WANG Shi-feng2,WU Jing1, 2*. Fluorescence Quantum Yield and Fluorescence Lifetime of Indole, 3-Methylindole and L-Tryptophan[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3758-3762. |
[5] |
YANG Ke-li1, 2, PENG Jiao-yu1, 2, DONG Ya-ping1, 2*, LIU Xin1, 2, LI Wu1, 3, LIU Hai-ning1, 3. Spectroscopic Characterization of Dissolved Organic Matter Isolated From Solar Pond[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3775-3780. |
[6] |
HUANG Li, MA Rui-jun*, CHEN Yu*, CAI Xiang, YAN Zhen-feng, TANG Hao, LI Yan-fen. Experimental Study on Rapid Detection of Various Organophosphorus Pesticides in Water by UV-Vis Spectroscopy and Parallel Factor Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3452-3460. |
[7] |
XUE Fang-jia, YU Jie*, YIN Hang, XIA Qi-yu, SHI Jie-gen, HOU Di-bo, HUANG Ping-jie, ZHANG Guang-xin. A Time Series Double Threshold Method for Pollution Events Detection in Drinking Water Using Three-Dimensional Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3081-3088. |
[8] |
JIA Yu-ge1, YANG Ming-xing1, 2*, YOU Bo-ya1, YU Ke-ye1. Gemological and Spectroscopic Identification Characteristics of Frozen Jelly-Filled Turquoise and Its Raw Material[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2974-2982. |
[9] |
YANG Xin1, 2, XIA Min1, 2, YE Yin1, 2*, WANG Jing1, 2. Spatiotemporal Distribution Characteristics of Dissolved Organic Matter Spectrum in the Agricultural Watershed of Dianbu River[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2983-2988. |
[10] |
ZHU Yan-ping1, CUI Chuan-jin1*, CHENG Peng-fei1, 2, PAN Jin-yan1, SU Hao1, 2, ZHANG Yi1. Measurement of Oil Pollutants by Three-Dimensional Fluorescence
Spectroscopy Combined With BP Neural Network and SWATLD[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2467-2475. |
[11] |
QIU Cun-pu1, 2, TANG Xiao-xue2, WEN Xi-xian4, MA Xin-ling2, 3, XIA Ming-ming2, 3, LI Zhong-pei2, 3, WU Meng2, 3, LI Gui-long2, 3, LIU Kai2, 3, LIU Kai-li4, LIU Ming2, 3*. Effects of Calcium Salts on the Decomposition Process of Straw and the Characteristics of Three-Dimensional Excitation-Emission Matrices of the Dissolved Organic Matter in Decomposition Products[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2301-2307. |
[12] |
ZHANG Xin-yuan1, LI Yan2, WEI Dan1, 2*, GU Jia-lin2, JIN Liang2, DING Jian-li2, HU Yu1, ZHANG Xin-yuan1, YANG Hua-wei1. Effect of Rainfall Runoff on DOM Fluorescence of Soil on a Typical Slope Under Vegetation Cover[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1921-1926. |
[13] |
SHI Chuan-qi1, LI Yan2, HU Yu3, YU Shao-peng1*, JIN Liang2, CHEN Mei-ru1. Fluorescence Spectral Characteristics of Soil Dissolved Organic Matter in the River Wetland of Northern Cold Region, China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1517-1523. |
[14] |
JIANG Xin-tong1, 2, 3, XIAO Qi-tao3, LI Yi-min1, 2, LIAO Yuan-shan1, 2, LIU Dong3*, DUAN Hong-tao1, 2, 3*. Temporal and Spatial Effects of River Input on Dissolved Organic Matter Composition in Lake Bosten[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1636-1644. |
[15] |
LI Yuan-jing1, 2, CHEN Cai-yun-fei1, 2, LI Li-ping1, 2*. Spectroscopy Study of γ-Ray Irradiated Gray Akoya Pearls[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1056-1062. |
|
|
|
|