|
|
|
|
|
|
Near Infrared Spectroscopy Identification Method of Wood Surface Defects Based on SA-PBT-SVM |
YU Hui-ling1, MEN Hong-sheng2, LIANG Hao2, ZHANG Yi-zhuo2* |
1. Northeast Forestry University, Information and Computer Engineering College, Harbin 150040, China
2. Northeast Forestry University, College of Mechanical and Electrical Engineering, Harbin 150040, China |
|
|
Abstract In this paper, near infrared spectroscopy was applied to build an identification model to predict four types of defects on the surface of wood boards. A calibration set and a prediction set made of 50 and 30 samples were built randomly and respectively. In addition, a near infrared spectrometer, ranging from 900 to 1 700 nm was used to collect the spectra of the surface of the boards. The original spectra were pre-treated by SNV algorithm to eliminate the influence of solid particle size, surface scattering, and the change of optical path of diffused reflectance spectra. Afterwards, a training model was built by partial binary tree of support vector machine (PBT-SVM), and parameters were optimized by simulated annealing (SA) algorithm to find the optimal parameters and band characteristics. Then an identification model was built based on optimal parameters, band characteristics, and the identification of prediction set. The results showed that the performance of polynomial kernel function was obtained with the parameters setting as γ=28.63, coef=18.69, d=1 and, C=12.03. The recognition rate of crack and live knot was 100%, while the recognition rate of dead knot and wormhole was 93.33%. The mean accuracy of identification reached 96.65% with an average recognition time of 0.002 s. The approach was feasible to classify the four types of defects on the surface of solid wood effectively.
|
Received: 2017-01-31
Accepted: 2017-06-20
|
|
Corresponding Authors:
ZHANG Yi-zhuo
E-mail: nefuzyz@163.com
|
|
[1] Zhang Yizhuo, Xu Chao, Li Chao. Journal of Forestry Research, 2015, 26(3): 745.
[2] Zhang Yizhuo, Liu Sijia, Cao Jun. Wood Sci. Technol., 2016, 50(3): 297.
[3] Zhang Yizhuo, Liu Sijia, Tu Wenjun. Optical Engineering, 2015, 54(10): 103102(1).
[4] Sundaram J, Mani S, Kandala C V K. American Journal of Analytical Chemistry, 2015, 6(12): 923.
[5] Jones P D, Schimleck L R, Peter G F, et al. Wood Sci. Technol., 2006, 40(8): 709.
[6] YANG Zhong, CHEN Ling, FU Yue-jin(杨 忠, 陈 玲, 付跃进). Journal of Northeast Forestry University(东北林业大学学报), 2012, 40(8): 70.
[7] Miranda Angela,Lavrador Rui,Julio Filipal, et al. Behavior Research Methods, 2016, 48(4): 1667.
[8] Cogill S, Wang L. Bioinformatics, 2016, 32(23): 3611.
[9] Xu Yitian, Chen Mei, Li Guohui. International Journal of Systems Science, 2016, 47(15): 3637.
[10] Zhai Shijun, Pan Juan, Luo Hongwei, et al. Measurement, 2016, 80: 58. |
[1] |
GAO Feng1, 2, XING Ya-ge3, 4, LUO Hua-ping1, 2, ZHANG Yuan-hua3, 4, GUO Ling3, 4*. Nondestructive Identification of Apricot Varieties Based on Visible/Near Infrared Spectroscopy and Chemometrics Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 44-51. |
[2] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[3] |
HU Cai-ping1, HE Cheng-yu2, KONG Li-wei3, ZHU You-you3*, WU Bin4, ZHOU Hao-xiang3, SUN Jun2. Identification of Tea Based on Near-Infrared Spectra and Fuzzy Linear Discriminant QR Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3802-3805. |
[4] |
LIU Xin-peng1, SUN Xiang-hong2, QIN Yu-hua1*, ZHANG Min1, GONG Hui-li3. Research on t-SNE Similarity Measurement Method Based on Wasserstein Divergence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3806-3812. |
[5] |
BAI Xue-bing1, 2, SONG Chang-ze1, ZHANG Qian-wei1, DAI Bin-xiu1, JIN Guo-jie1, 2, LIU Wen-zheng1, TAO Yong-sheng1, 2*. Rapid and Nndestructive Dagnosis Mthod for Posphate Dficiency in “Cabernet Sauvignon” Gape Laves by Vis/NIR Sectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3719-3725. |
[6] |
WANG Qi-biao1, HE Yu-kai1, LUO Yu-shi1, WANG Shu-jun1, XIE Bo2, DENG Chao2*, LIU Yong3, TUO Xian-guo3. Study on Analysis Method of Distiller's Grains Acidity Based on
Convolutional Neural Network and Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3726-3731. |
[7] |
LUO Li, WANG Jing-yi, XU Zhao-jun, NA Bin*. Geographic Origin Discrimination of Wood Using NIR Spectroscopy
Combined With Machine Learning Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3372-3379. |
[8] |
ZHANG Shu-fang1, LEI Lei2, LEI Shun-xin2, TAN Xue-cai1, LIU Shao-gang1, YAN Jun1*. Traceability of Geographical Origin of Jasmine Based on Near
Infrared Diffuse Reflectance Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3389-3395. |
[9] |
YANG Qun1, 2, LING Qi-han1, WEI Yong1, NING Qiang1, 2, KONG Fa-ming1, ZHOU Yi-fan1, 2, ZHANG Hai-lin1, WANG Jie1, 2*. Non-Destructive Monitoring Model of Functional Nitrogen Content in
Citrus Leaves Based on Visible-Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3396-3403. |
[10] |
HUANG Meng-qiang1, KUANG Wen-jian2, 3*, LIU Xiang1, HE Liang4. Quantitative Analysis of Cotton/Polyester/Wool Blended Fiber Content by Near-Infrared Spectroscopy Based on 1D-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3565-3570. |
[11] |
HUANG Zhao-di1, CHEN Zai-liang2, WANG Chen3, TIAN Peng2, ZHANG Hai-liang2, XIE Chao-yong2*, LIU Xue-mei4*. Comparing Different Multivariate Calibration Methods Analyses for Measurement of Soil Properties Using Visible and Short Wave-Near
Infrared Spectroscopy Combined With Machine Learning Algorithms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3535-3540. |
[12] |
KANG Ming-yue1, 3, WANG Cheng1, SUN Hong-yan3, LI Zuo-lin2, LUO Bin1*. Research on Internal Quality Detection Method of Cherry Tomatoes Based on Improved WOA-LSSVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3541-3550. |
[13] |
HUANG Hua1, LIU Ya2, KUERBANGULI·Dulikun1, ZENG Fan-lin1, MAYIRAN·Maimaiti1, AWAGULI·Maimaiti1, MAIDINUERHAN·Aizezi1, GUO Jun-xian3*. Ensemble Learning Model Incorporating Fractional Differential and
PIMP-RF Algorithm to Predict Soluble Solids Content of Apples
During Maturing Period[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3059-3066. |
[14] |
CHEN Jia-wei1, 2, ZHOU De-qiang1, 2*, CUI Chen-hao3, REN Zhi-jun1, ZUO Wen-juan1. Prediction Model of Farinograph Characteristics of Wheat Flour Based on Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3089-3097. |
[15] |
GUO Ge1, 3, 4, ZHANG Meng-ling3, 4, GONG Zhi-jie3, 4, ZHANG Shi-zhuang3, 4, WANG Xiao-yu2, 5, 6*, ZHOU Zhong-hua1*, YANG Yu2, 5, 6, XIE Guang-hui3, 4. Construction of Biomass Ash Content Model Based on Near-Infrared
Spectroscopy and Complex Sample Set Partitioning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3143-3149. |
|
|
|
|