光谱学与光谱分析 |
|
|
|
|
|
Characterization of the Interaction between Acetylisovaleryltylosin Tartrat and Bovine Serum Albumin without or with Zn2+ and Cu2+ by Spectroscopic Analysis |
DENG Feng-yu1, HU Tao-ying1, ZHOU Shan-shan1,2, LIU Ying1,2* |
1. College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China 2. Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing 100081 |
|
|
Abstract Acetylisovaleryltylosin tartrate (ATLL) is a new macrolide veterinary antibiotic, it is necessary to study the binding of ATLL to protein, which will directly correlate with the efficiency in vivo. Bovine serum albumin (BSA) is structure homologous with human serum albumin (HSA), and is commonly chosen as a model to investigate drug-protein interaction.There are many metal ions in plasma, as yet, the studies on mainly focus on single metal ion. In this study, the multiple systems formed by ATLL and BSA without or with Zn2+ and Cu2+ have been studied by mult-spectroscopy. The results showed that, the fluorescence of BSA was quenched by ATLL through a static quenching mechanism. The effective quenching constant (Ka) of ATLL to BSA decreased with Zn2+ and increased with Cu2+. Thermodynamic parameters revealed that hydrogen bonds and hydrophobic forces played significant roles in the binding of ATLL to BSA. The polarity of tryptophan and tyrosine residues changed when adding ATLL with or without Zn2+ and Cu2+. FT-IR spectra showed that ATLL changed α-helix and β-sheet of BSA into β-turn and random structure. The UV-Vis spectra indicated that the effects of Zn2+ on ATLL binding to BSA may cause by a competition binding, and Cu2+ possibly formed Cu2+-ATLL complex via metal ion bridge. All the knowledge obtained in this work will be helpful to understand the transport mechanism of ATLL with BSA and the effect of metal ions on the interaction of drug-protein in vivo.
|
Received: 2015-06-18
Accepted: 2015-10-13
|
|
Corresponding Authors:
LIU Ying
E-mail: liuying4300@163.com
|
|
[1] Cerda R, Petruccelli M A, Piscopo M, et al. J. Vet. Pharmacol. Therap.,2006, 27: 277. [2] Kowalski C, Rolinski Z, Zan R, et al. Pol. J. Vet. Sci.,2002, 44: 127. [3] Bi S Y, Pang B, Wang T J, et al. Spectrochim. Acta A, 2014, 120: 456. [4] Ao J J, Gao L, Yuan T, et al. Chemosphere, 2015, 119: 590. [5] Zhang Y P, Shi S Y, Huang K L. J. Lumin.,2011, 131: 1927. [6] Yang K D. Trace Elements and Health. Beijing:Science Press, 2003. [7] Xu J G, Wang Z B. Fluorescence Spectroscopy. Beijing:Science Press, 2006. [8] Geng B, Liu X, Tian Y L, et al. Spectrochim. Acta A, 2014, 120: 512. [9] Ross P D, Subramanian S. Biochemistry, 1981, 20: 3096. [10] Pellegrini D, Corsi M, Bonanni M, et al. Dyes Pigments, 2015, 116: 65. [11] Zhao M N, Zhou H M. Biophysics. First ed. Beijing:Higher Education Press, 2000. |
[1] |
HAN Xue1, 2, LIU Hai1, 2, LIU Jia-wei3, WU Ming-kai1, 2*. Rapid Identification of Inorganic Elements in Understory Soils in
Different Regions of Guizhou Province by X-Ray
Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 225-229. |
[2] |
XU Rong1, AO Dong-mei2*, LI Man-tian1, 2, LIU Sai1, GUO Kun1, HU Ying2, YANG Chun-mei2, XU Chang-qing1. Study on Traditional Chinese Medicine of Lonicera L. Based on Infrared Spectroscopy and Cluster Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3518-3523. |
[3] |
ZHANG Xiao-dan1, 2, LIU Li-li1*, YU Ying1, CHENG Wei-wei1, XU Bao-cheng1, HE Jia-liang1, CHEN Shu-xing1, 2. Activation of Epigallocatechin Gallate on Alcohol Dehydrogenase:
Multispectroscopy and Molecular Docking Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3622-3628. |
[4] |
WANG Peng1, GAO Yong-bao1*, KOU Shao-lei1, MEN Qian-ni1, ZHANG Min1, HE Tao1, YAO Wei2, GAO Rui1, GUO Wen-di1, LIU Chang-rui1. Multi-Objective Optimization of AAS Conditions for Determination of Gold Element Based on Gray Correlation Degree-RSM Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3117-3124. |
[5] |
LIU Pan1, 2, 3, DU Mi-fang1*, LI Bin1, LI Jing-bin1, ZENG Lei1, LIU Guo-yuan1, ZHANG Xin-yao1, 4, ZHA Xiao-qin1, 4. Determination of Trace Tellurium Content in Aluminium Alloy by
Inductively Coupled Plasma-Atomic Emission Spectrometry Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3125-3131. |
[6] |
LIU Wen-bo, LIU Jin, HAN Tong-shuai*, GE Qing, LIU Rong. Simulation of the Effect of Dermal Thickness on Non-Invasive Blood Glucose Measurement by Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2699-2704. |
[7] |
WANG Bin1, 2, ZHENG Shao-feng2, GAN Jiu-lin1, LIU Shu3, LI Wei-cai2, YANG Zhong-min1, SONG Wu-yuan4*. Plastic Reference Material (PRM) Combined With Partial Least Square (PLS) in Laser-Induced Breakdown Spectroscopy (LIBS) in the Field of Quantitative Elemental Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2124-2131. |
[8] |
LENG Jun-qiang, LAN Xin-yu, JIANG Wen-shuo, XIAO Jia-yue, LIU Tian-xin, LIU Zhen-bo*. Molecular Fluorescent Probe for Detection of Metal Ions[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2002-2011. |
[9] |
LI Chen-xi1, SUN Ze-yu1, 2, ZHAO Yu2*, YIN Li-hui2, CHEN Wen-liang1, 3, LIU Rong1, 3, XU Ke-xin1, 3. The Research Progress of Two-Dimensional Correlation Spectroscopy and Its Application in Protein Substances Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 1993-2001. |
[10] |
HOU Qian-yi1, 2, DONG Zhuang-zhuang1, 2, YUAN Hong-xia1, 2*, LI Qing-shan1, 2*. A Study of the Mechanism of Binding Between Quercetin and CAV-1 Based on Molecular Simulation, Bio-Layer Interferometry and
Multi-Spectroscopy Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 890-896. |
[11] |
WU Lei1, LI Ling-yun2, PENG Yong-zhen1*. Rapid Determination of Trace Elements in Water by Total Reflection
X-Ray Fluorescence Spectrometry Using Direct Sampling[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 990-996. |
[12] |
LI Wen, CHEN Yin-yin*, LUO Xue-ke, HE Na. Research on Testing NH3-N and COD in Water Quality Based on
Continuous Spectroscopy Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 254-259. |
[13] |
LI Jin-zhi1, LIU Chang-jin1, 4*, SHE Zhi-yu2, ZHOU Biao2, XIE Zhi-yong2, ZHANG Jun-bing3, JIANG Shen-hua2, 4*. Antiglycation Activity on LDL of Clove Essential Oil and the Interaction of Its Most Abundant Component—Eugenol With Bovine Serum Albumin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 324-332. |
[14] |
YANG Kun, CHEN Lei*, CHENG Fan-chong, PEI Huan, LIU Gui-ming, WANG Bao-huai, ZENG Wen. Emission Spectroscopy Diagnosis of Air Gliding Arc Plasma Under
Atmospheric Pressure Condition[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3006-3011. |
[15] |
HU Xuan1, CHENG Zi-hui1*, ZHANG Shu-chao2, SHI Lei2. Matrix Separation-Determination of Rare Earth Oxides in Bauxite by
Inductively Coupled Plasma-Atomic Emission Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3130-3134. |
|
|
|
|